
- •О.И.Москвич общая физика Молекулярная физика
- •Предисловие
- •I. Основы молекулярной статистики
- •1.1. Предмет молекулярной физики
- •1.2. Масштабы физических величин в молекулярном мире
- •1.3. Теоретические и экспериментальные методы молекулярной физики
- •1.4. Эволюция молекулярных систем. Порядок и хаос
- •1.5. Принципы организации статистического и термодинамического методов изучения макросистем
- •Статистический метод
- •Термодинамический метод
- •2.1. Классификация моделей молекулярных систем
- •2.2. Идеальные статистические системы
- •Модели идеальных систем
- •2.3. Элементарные сведения из теории вероятностей
- •Случайные события
- •Определения вероятности событий
- •Статистическое или частотное определение вероятности.
- •Теоремы теории вероятностей
- •Условие нормировки вероятности
- •Случайная величина
- •Плотность вероятности
- •2.4. Основные понятия молекулярной статистики
- •Вероятность микроскопического состояния. Статистический ансамбль
- •Статистические постулаты
- •Комментарий к постулату равновероятности
- •Эргодическая гипотеза:
- •Постулат равновероятности доступных микроскопических состояний изолированной системы в состоянии термодинамического
- •Комментарий к эргодической гипотезе
- •Вероятность макроскопического состояния
- •3.1. Вывод закона распределения вероятностей Описание системы
- •Актуальные свойства модели системы
- •Постановка задачи
- •Вывод закона
- •Математические преобразования больших чисел. Введение общепринятых обозначений
- •Формула для вероятности макросостояния. Закон Бернулли, или биномиальное распределение.
- •3.2. Графическое представление биномиального распределения.
- •Основные характеристики биномиального распределении.
- •3.3. Предельные случаи биномиального распределения
- •4.1. Распределение энергии в статической системе
- •Вывод распределения Гиббса
- •4.2. Вывод распределения Максвелла
- •4.3. Плотность вероятности и характерные скорости распределения Максвелла
- •4.4. Распределение Максвелла по компонентам скорости
- •4.5. Экспериментальная проверка распределения Максвелла
- •5.1. Вывод формулы для давления идеального газа
- •5.2. Основное уравнение молекулярно-кинетической теории. Газовые законы
- •5.3. Уравнение эффузии
- •5.4. Измерение давления
- •5.5. Определение и измерение температуры
- •5.6. Построение эмпирической шкалы на основе газового термометра
- •Преимущества газовой шкалы температур
- •Построение газовой шкалы температур
- •Термодинамическая шкала температур
- •6.1. Распределение молекул по энергиям во внешнем потенциальном поле
- •6.2. Формула Больцмана для концентрации молекул в потенциальном поле
- •6.3. Зависимость концентрации молекул газа от координат в однородном гравитационном поле и поле центробежных сил
- •Графическое представление зависимости концентрации молекул от координат
- •6.4. Экспериментальное подтверждение распределения Больцмана: опыты Перрена
- •Получение макромолекул
- •Выделение частиц одинакового размера
- •Измерение диаметра макромолекулы
- •Подсчёт количества частиц на определённой высоте
- •6.5. Барометрическая формула
- •6.6. Закон распределения Максвелла – Больцмана
- •7.1. Формулировка теоремы и её доказательство Формулировка теоремы
- •Актуальные свойства модели статистической системы
- •Доказательство теоремы
- •7.2. Статистические степени свободы
- •7.3. Броуновское движение и его статистическое описание
- •Поступательное броуновское движение
- •Вращательное броуновское движение
- •7.4. Броуновский критерий точности физических измерений
- •7.5. Классическая теория теплоёмкости многоатомных газов. Область её применимости
- •7.6. Классическая теория теплоёмкости твёрдых тел.
- •7.7. Применение квантовых моделей в теории теплоёмкости твёрдых тел
- •Модель Эйнштейна
- •Модель Дебая
- •II. Основы термодинамики
- •8.1. Четыре постулата термодинамики
- •8.2. Нулевое (общее) начало термодинамики
- •Формулировка постулата
- •Свойство транзитивности термодинамического равновесия
- •Информационное содержание постулата
- •Фундаментальное и прикладное значение постулата
- •8.3. Макроскопические процессы
- •8.4. Функция состояния
- •Математические свойства функции состояния
- •8.5. Внутренняя энергия системы. Работа и теплота Внутренняя энергия
- •Макроскопическая работа и теплота
- •8.6. Калорическое и термическое уравнения состояния
- •9.1. Первое начало термодинамики
- •Формулировка постулата
- •Математическая запись постулата
- •Информационное содержание постулата
- •Фундаментальное и прикладное значение постулата
- •9.2. Теплоёмкость
- •Связь между теплоёмкостями и(общий случай)
- •Уравнение Роберта Майера
- •9.3. Политропические процессы в идеальном газе
- •Вывод уравнения политропического процесса в идеальном газе
- •9.4. Тепловые машины и их эффективность.
- •Принципиальная схема работы тепловой машины
- •Показатели эффективности тепловых машин
- •10.1. Цикл Карно
- •Расчёт кпд машины Карно
- •10.2. Теоремы Карно
- •Термодинамическая шкала температур
- •10.3. Метод циклов
- •Задача о нахождении зависимости внутренней энергии макроскопического тела от его объема
- •10.4. Неравенство Клаузиуса. Определение энтропии
- •10.5. Оценка эффективности тепловых машин сверху
- •Примеры оценок эффективности тепловых машин сверху кпд бензинового двигателя внутреннего сгорания
- •Кпд паровой турбины
- •Киэ бытового холодильника
- •Киэ кондиционера воздуха
- •Киэ теплового насоса
- •Тепловое загрязнение окружающей среды
- •11.1. Формулировки второго начала термодинамики
- •Энтропийная формулировка второго начала термодинамики Часть первая
- •Часть вторая
- •Информационное содержание постулата
- •11.2. Закон возрастания энтропии в изолированных системах
- •Демон Максвелла
- •Формулировка парадокса
- •Разрешение парадокса
- •11.3. Область применимости второго начала термодинамики
- •Статистический характер второго начала
- •11.4. Концепция тепловой смерти Вселенной
- •Концепция Клаузиуса
- •Флуктуационная гипотеза Больцмана
- •Несостоятельность концепции тепловой смерти Вселенной
- •11.5. Энтропия и её изменение в различных процессах
- •Постановка задачи
- •Описание системы
- •Актуальные свойства системы и процесса
- •Решение
- •Парадокс Гиббса Описание
- •По разные стороны перегородки находятся различные газы. После устранения перегородки начнется диффузия.
- •По разные стороны перегородки находится один и тот же газ.
- •12.1. Термодинамические функции
- •Свободная энергия
- •Термодинамический потенциал Гиббса
- •12.3. Условия термодинамической устойчивости макроскопических систем. Принцип Ле Шателье-Брауна
- •Принцип Ле Шателье-Брауна
- •Проведение полного термодинамического анализа вещества на полуэмпирической основе
- •12.4. Третье начало термодинамики
- •Формулировка постулата
- •Математическая запись постулата (варианты)
- •Информационное содержание постулата
- •Статус постулата
- •Следствия третьего начала
- •III. Физика реальных макросистем
- •13.1. Твердые тела
- •13.2. Реальные газы и жидкости
- •Потенциал межмолекулярного взаимодействия
- •Природа межмолекулярного взаимодействия
- •Структура жидкостей
- •13.3. Переход из газообразного состояния в жидкое.
- •13.4. Уравнения состояния реального газа
- •13.5. Модель газа Ван-дер-Ваальса. Уравнение Ван-дер-Ваальса
- •14.1. Изотермы газа Ван-дер-Ваальса
- •14.2. Критическое состояние вещества
- •Закон соответственных состояний
- •Свойства вещества в критическом состоянии
- •Анализ применения уравнения Ван-дер-Ваальса для описания свойств реальных газов
- •14.3. Внутренняя энергия газа Ван-дер-Ваальса
- •14.4. Эффект Джоуля-Томсона Основные определения
- •Описание процесса Джоуля-Томсона
- •Сущность эффекта Джоуля-Томсона
- •Расчет дифференциального эффекта Джоуля-Томсона
- •Расчет интегрального эффекта Джоуля-Томсона
- •14.5. Методы получения низких температур
- •Метод противоточного обмена теплотой
- •Метод адиабатического размагничивания
- •15.1. Условие равновесия фаз химически однородного вещества
- •15.2. Классификация фазовых переходов по Эренфесту
- •Фазовые переходы первого рода
- •Фазовые переходы второго рода
- •15.3. Фазовые переходы первого рода. Диаграмма состояний
- •15.4. Уравнение Клапейрона-Клаузиуса
- •Вывод уравнения Клапейрона-Клаузиуса
- •Вывод уравнения Клапейрона-Клаузиуса методом циклов
- •Актуальные свойства процесса
- •Постановка задачи
- •Вывод уравнения
- •15.5. Диаграмма состояний гелия. Сверхтекучесть жидкого гелия.
- •16.1. Релаксационные процессы в молекулярных системах
- •16.2. Стационарные уравнения переноса в газах, жидкостях и твердых телах
- •Уравнение теплопроводности
- •Уравнение самодиффузии
- •Уравнение внутреннего трения
- •16.3. Внутренняя теплопроводность и внешняя теплопередача
- •Стационарное распределение температуры в бесконечной плоско-параллельной пластинке
- •Стационарное распределение температуры между двумя концентрическими бесконечно длинными цилиндрами
- •Стационарное распределение температуры между двумя концентрическими сферами
- •Внешняя теплопередача
- •17.1. Столкновения молекул и их количественные характеристики
- •Эффективное сечение молекул
- •Средняя длина свободного пробега молекулы
- •Кинематические параметры и
- •17.2. Обобщенное уравнение переноса
- •Вывод обобщенного уравнения процесса Описание системы
- •Актуальные свойства модели процесса
- •Постановка задачи
- •Вывод уравнения
- •17.3. Элементарная кинетическая теория теплопроводности,
- •17.4. Явления переноса в ультраразреженных газах
- •Трение и теплопроводность ультраразреженных газов
- •Тепловая и изотермическая эффузия
- •18.1. Атмосфера как открытая система и как открытая книга
- •18.2. Состав и структура атмосферы Земли.
- •18.3. Термофизическая модель атмосферы
- •18.4. Парниковый эффект
- •Сущность парникового эффекта
- •Парниковые газы
- •Проблема глобального потепления
- •Киотский протокол
- •18.5. Инверсия температуры в стратосфере. Озоносфера Земли
- •Мониторинг озонового слоя
- •Монреальский Протокол
- •18.6. Концепция «ядерной зимы»
- •«Ядерная зима» Сценарии ядерной войны
- •Огненные смерчи – суперподъемники
- •Антипарниковый эффект
- •Глобальный характер климатических последствий
- •Список литературы
- •Общая физика. Молекулярная физика
- •660041, Г. Красноярск, пр. Свободный, 79
5.1. Вывод формулы для давления идеального газа
Описание системы
Рассматриваемая система – идеальный газ, который находится в сосуде в состоянии термодинамического равновесия. Внешних силовых полей нет.
Постановка задачи
На основе микроскопических представлений
требуется получить уравнение, определяющее
давление
.
Актуальные свойства модели системы
Распределение молекул идеального газа по скоростям подчиняется закону Максвелла. Поскольку вклад в давление вносят только нормальные к стенке составляющие импульсов молекул, то для предстоящих расчетов потребуется применение одномерного распределения по компоненте скорости. Отсутствие внешних воздействий позволяет считать концентрацию частиц одинаковой во всех частях сосуда.
Вывод уравнения
• Изобразим рассматриваемую систему на схематическом рисунке
(рис. 5.1):
Рис. 5.1.
Обозначим направление перпендикулярное
стенке сосуда как ось X,
тогда вклад в давление будут вносить
только «иксовые» составляющие импульсов
молекул, ударяющихся о стенку. Мысленно
выделим цилиндр (он показан на рис. 5.1)
объёмом,
у которого площадь основанияS=1м2,
а длина равна составляющей скорости
.
Индекс (+) обозначает направление вдоль
оси
к стенке. Длина цилиндра такова, что
только те молекулы, которые находятся
внутри цилиндра, успеют за 1 секунду
достигнуть стенки сосуда и столкнуться
с ней.
• Импульс, передаваемый одной молекулой
сосуда при столкновении с ней равен
.
• Обозначим
вклад в давление, который даёт группа
молекул, или «команда», с некоторой
фиксированной скоростью, точнее со
скоростями в интервале (
),
тогда
,
где
- число молекул со скоростями
в выделённом объёме цилиндра (рис. 5.1).
•
,
где –
концентрация
частиц, обладающих скоростями в интервале
(
);
,
,
здесь
– равновесная концентрация молекул в
объёмеV,
– одномерная плотность вероятности
распределения Максвелла.
• Таким образом,
• Полученное уравнение (5.2) интегрируем
по области значений
,
поскольку, летящие в отрицательном
направлении молекулы
не сталкиваются с данной стенкой сосуда,
следовательно, не вносят вклад в давление:
Ответ:
Подобные расчёты для компонент давления
,
дадут такой же результат. Как и следовало
ожидать,в изотропной среде давление
газа изотропно.Это утверждение
известно какзакон Паскаля
В заключение обсудим вопрос о давлении,
создаваемом смесью различных в химическом
отношении газов. Отдельные компоненты
смеси идеальных газов можно считать
независимыми, поэтому каждая компонента
создаёт давление равное (5.3). Полное
давление смеси газа равно сумме давлений
компонент или сумме парциальных давлений
Таким образом, мы сформулировали закон Дальтона.
5.2. Основное уравнение молекулярно-кинетической теории. Газовые законы
Запишем выражение для температуры через среднюю кинетическую энергию движения молекул согласно (4.22)
Подставив эту формулу в (5.3), получим основное уравнение молекулярной кинетической теории идеальных газов (основное уравнение МКТ)
В (5.6) и далее для обозначения давления
используем строчную букву
.
Уравнение (5.6) устанавливает простую
связь между макроскопическим параметром
и микроскопическим параметром
.
Многочисленные эмпирические законы идеальных газов были получены раньше, чем основное уравнение МКТ. В то же время, они являются естественными следствиями(5.3) и легко выводятся из него. Давайте убедимся в этом.
Подставим выражение для равновесной
концентрации
через полное число частиц
в (5.3), тогда получим
или
Сделаем замену
и (5.7) примет вид
Произведение двух констант дает новую
константу:
,
где
– универсальная газовая постоянная.
Её значение в СИ равно 8,31 Дж / моль∙К.
Газовую постоянную ввел в научный обиход
наш знаменитый соотечественник Д.И.
Менделеев.
Перепишем (5.8) окончательно
или
Уравнения (5.7), (5.9) и (5.10) представляют
разные варианты записи уравнения
состояния идеального газа. Если уравнение
состояния содержит постоянную
,
то его называют уравнением
Клапейрона-Менделеева.
Вывод уравнения состояния газа впервые
был сделан Б.П.Э. Клапейроном путем
обобщения законов, установленных
экспериментально выдающимися европейскими
учеными на протяжении полутора столетий.
Мы же интерпретируем эти законы как
частные случаи уравнения (5.7). При
= const. получимзакон Бойля-Мариотта,
при
.
–закон Гей-Люссака, а при
–закон Шарля. Прямым следствием
(5.7) является такжезакон Авогадро.
Приведем его формулировку.
При одинаковых температурах и давлениях в равных объёмах любого газа содержится одинаковое число молекул.
При нормальных условиях ()
это число задаётсяпостоянной
Лошмидта
Парад законов, полученных «на кончике пера», является наилучшим подтверждением справедливости кинетической теории газов и ее основных представлений.