Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

material1 / different / Chung-Yu Wu - Analog Circuit Design

.pdf
Скачиваний:
58
Добавлен:
05.06.2015
Размер:
29.49 Mб
Скачать

11-3

CHUNG-YU WU

(4) Accuracy

absolute accuracy: The difference between the expected and actual transfer response. It includes the offset, gain, and linearity errors.

relative accuracy: The accuracy after the offset and gain errors have been removed.

Þ maximum integrated nonlinearity (INL) error *Accuracy units: % of full-scale value.

effective number of bits

fraction of an LSB

*12-bit accuracy Þ all errors 1 LSB ( Vout )

212

(5) Integral nonlinearity (INL) error

Definition: The deviation of actual transfer response from a straight line.

INL error (best-fit) and INL error (endpoint)

Usually, INL error is referred to as the maximum INL error.

Vout

Best-fit

 

straight line

 

VLSB

 

 

 

(LSB)

Transfer response

(maximum) INL error

 

without gain and

(best-fit)

 

offset errors

 

Endpoint straight line

(maximum) INL error (endpoint)

0......0

1......1

Bin

11-4

CHUNG-YU WU

(6) Differential nonlinearity (DNL) error

Definition: The variation in analog step sizes away from 1 LSB. ( usually, gain and offset errors have been removed)

(7) Monotonicity: The output signal magnitude always increases as the input digital code increases.

* Maximum DNL error 0.5 LSBÞ monotonicity

*Many monotonic DAC may have a maximum DNL error 0.5 LSB

*Maximum INL error 0.5 LSBÞ monotonicity

(8)Settling time

The time it takes for the DAC to settle to within some specified amount of the final value (usually 0.5 LSB)

(9) Sampling rate

The rate at which sample can be continuously converted.

(Typically the sampling rate is equal to the inverse of the settling time)

4.Types of DACs

(1)Decoder-based DAC

(2)Binary-weighted DAC

(3)Thermometer-code DAC

(4)Hybrid DAC

(5)Oversampling DAC

11-5

CHUNG-YU WU

§11-2 Decoder-Based DAC

§11-2.1 Resistor-String DAC

1. Conceptual 8-bit resistor-string DAC.

255 RESISTORS R

REF+

S256

R

S255

R

S254

 

 

+

 

 

R

S253

DAC OUT

 

_

 

S4

 

R

S3

 

 

256 OUTPUTS

 

 

R

 

S2

 

R

8 To 256

S1

DECODER

REF- 0 1 2 3 4 5 6 7

(DAC INPUTS)

2. Practical realization

R0-R15: To divide VREF+ to VREF- into 16 voltage intervals

H0-H15

L0-L15: To divide each of those intervals into 16

a - p subintervals

*To insure maximum uniformity of step size, i.e. linearity, the resistance of the transmission gates should be made as large as possible Þ minimal loading.

*For 8-bit DAC, the error due to loading can be held to less than 1 LSB.

if 16R

2NR

( R = 200 Ω , R 3.2KΩ )

T

i

i

T

11-6

CHUNG-YU WU

8-bit Resistor-String DAC (Multiple Resistor-String DAC)

 

L0

 

L1

0

L2

L3

 

 

L4

1

L5

L6

 

4:16

L7

 

L8

2

L9

L10

 

3

L11

L12

 

L13

 

L14

 

L15

 

 

H0

 

 

H1

0

 

H2

 

H3

 

 

H4

1

 

H5

 

H6

 

 

 

4:16

H7

 

H8

 

 

2

 

H9

 

H10

 

 

 

 

H11

3

 

H12

 

 

H13

 

 

H14

 

 

H15

 

REF+

H15

n15

 

 

R15

 

H14

n14

H15 p15

 

 

R14

 

H13

n13

H14 p14

 

 

R13

 

H12

n12

H13 p13

 

 

R12

 

H11

n11

H12 p12

 

 

R11

 

H10

n10

H11 p11

 

 

R10

 

H9

n9

H10 p10

 

 

R9

 

H8

n8

H9

p9

 

 

 

 

R8

 

H7

n7

H8

p8

 

 

 

 

R7

 

H6

n6

H7

p7

 

 

 

 

R6

 

H5

n5

H6

p6

 

 

 

 

R5

 

H4

n4

H5

p5

 

 

 

 

R4

 

H3

n3

H4

p4

 

 

 

 

R3

 

H2

n2

H3

p3

 

 

 

 

R2

 

H1

n1

H2

p2

 

 

 

 

R1

 

H0

n0

H1

p1

 

 

 

 

R0

 

 

 

H0

p0

 

 

 

 

 

REF-

 

 

L15

o

L0

 

 

 

 

L14

n

 

 

 

L13

m

 

 

 

L12

l

 

 

 

L11

k

 

 

 

L10

j

 

 

 

L9

i

 

DAC OUT

 

 

 

L8

h

 

 

 

L7

g

 

 

 

L6

f

 

 

 

L5

e

 

 

 

L4

d

 

L3

c

 

 

 

L2

b

 

 

 

L0+L1

a

 

 

11-7

CHUNG-YU WU

Subinterval Generation:

14R T's

 

 

Lo

L15

 

 

 

 

Transmission-

L14

 

 

 

gate resistor

 

 

 

 

L13

 

 

 

L12

 

 

 

L11

 

 

 

L10

 

 

 

L9

RT

Hi

 

L8

 

 

 

 

 

L7

 

Ri+1

 

 

 

Ri

RT

L6

 

 

200 Ω

L5

Ri-1

Hi

L4

L3

RT=3.2KΩ

L2

L0+L1

o

n

m

l

k

j

 

i

+

_A

h

 

g

DAC OUT

f

 

e

d

c

b

a

*Transmission gate size: 24μ /12μ ®3.2kW=RT

*The raw speed of the DAC is limited by the resistance of transmission gates a-p and the capacitance of the output node, also by the operating speed of the output buffer.

*VDD = +5V, -VSS = -5V, Vout : ±2.5V

Maximum conversion rate 0 full scale : 2.5MHz.

* For 8-bit DAC, the jump in step size can be held to less than 1 LSB if

 

 

 

 

 

 

R i

-

16RT Ri

 

 

 

 

 

16R ³

N

 

 

DR i

=

Ri +16RT

 

=

R i

£

1

2 R .

 

 

 

 

 

 

 

 

 

T

i

 

 

Ri

 

 

 

R i

 

 

Ri +16RT

 

2N

 

 

 

 

 

 

 

 

 

 

Þ 2N R

£16R

T

occurs when L =1

 

 

 

 

 

i

 

 

 

 

 

 

1

 

 

 

 

 

11-8

CHUNG-YU WU

§11-2.2 Folded Multiple Resistor-String DAC

11-9

CHUNG-YU WU

11-10

CHUNG-YU WU

11-11

CHUNG-YU WU

§11-3 Binary-Weighted DAC

§11-3.1 Charge-Redistribution DAC

1.Multiplying DAC

*All top plates are connected to the OP AMP input

ÞTo reduce substrate noise voltage injection.

*Switched-induced errors are large.

*offset cancellation

2.Multiplying DAC with bipolar input

LSB

MSB

sign bit

If bo = 0 Þ the signal Vin is positive Þ the same as 1.

11-12

CHUNG-YU WU

If b0 = 1

Þ the signal Vin is negative.

 

φ1, φ2 positions are exchanged.

 

n

 

Vout = -Vin åbi2i

i=1

3.General characteristics or features of charge-redistribution DAC:

(1)The auto-calibration cycle can be performed to remove the effects of component ratio errors.

(2)Good linearity and stability due to good linear capacitors.

(3)Too large capacitance ratio is required for high-bit DAC.

(4)Suitable for medium-speed DAC with 6-bit resolution or below.

§11-3.2 Weighted-Current-Source DAC (Current-Mode Binary-

Weighted DAC)

Conceptual circuit:

1.Conventional structure

*Simple circuit structure without decoding logic.

*At the mid-code transition 011---1 10---0, the MSB current source needs to be matched to the sum of all the other current sources to within 0.5 LSB.

Þdifficult for large bit number.

Þnot guaranteed monotonic.

*Low-accuracy matching causes inaccurate bit transition

Þ typical DNL plot as shown

* The errors caused by the dynamic behavior of the switches, such as charge injection and clock feedthrough, result in glitches which is most severe at the midcode transition, as all switches are switching simultaneously.

Þcontains highly nonlinear signal components

Þmanifest itself as spurs in the frequency domain.

maximum

Midcode glitches

Transfer

response

Reference: IEEE Journal of Solid-State Circuits, vol.33, pp.1948-1958, Dec.1998.

Соседние файлы в папке different