Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Книги / Сидоренко Е.В. ''Методы математической обработки в психо (2).doc
Скачиваний:
451
Добавлен:
29.05.2015
Размер:
4.99 Mб
Скачать

9.4. Решения задач Главы 4

Решение задачи 6

Вопрос 1: Можно ли утверждать, что разные картины методики Хекхаузена обладают разной побудительной силой в отношении моти­вов: а) "надежда на успех"; б) "боязнь неудачи"?

Для того, чтобы ответить на этот вопрос, необходимо сопоставить распределение реакций "надежда на успех" и реакций "боязнь неудачи" с равномерным распределением. Тем самым мы проверим, равномерно ли распределяются реакции "надежды на успех" по шести картинам и равно­мерно ли распределяются реакции "боязни неудачи" по шести картинам.

Количество наблюдений достаточно велико, чтобы мы могли ис­пользовать любой из классических критериев - χ2 или λ. Однако, как мы помним, картины в данном исследовании предъявлялись разным испытуемым в разных последовательностях, следовательно, мы не мо­жем говорить об однонаправленном изменении признака в какую-либо одну сторону: все разряды (картины) следуют друг за другом в слу­чайном порядке. Это является веским основанием для применения кри­терия χ2 и отказа от критерия λ.

Рассмотрим оба аспекта поставленного вопроса последовательно.

А) Равномерно ли распределяются реакции "надежды на успех" по шести картинам методики Хекхаузена?

H0: Распределение реакций "надежды на успех" не отличается от рав­номерного распределения.

H1: Распределение реакций "надежды на успех" отличается от равно­мерного распределения.

Рассчитаем теоретические частоты для равномерного распределе­ния по формуле:

где n - количество наблюдений,

k - количество разрядов.

В данном случае количество наблюдений - это количество реак­ций "надежды на успех" у 113 испытуемых. Таких реакций зарегистри­ровано 580, следовательно, n =580. Количество разрядов - это количе­ство стимульных картин, следовательно, k=6. Определяем fтеор:

Количество степеней свободы V определяем по формуле:

v= k -l=6-l=5

Итак, поправка на непрерывность не нужна, мы можем произво­дить все расчеты по общему алгоритму. Они представлены в Табл.9.11.

Таблица 9.11

Расчет критерия χ2 при сопоставлении распределения реакций "надежды на успех" по 6 картинам с равномерным распределением

Разряды-картины методики

Эмпирические частоты реакций "надежды на

успех" fэ

Теоретические частоты реакции "надежды на успех" fт

fэ- fт

(fэ- fт)2

(fэ- fт)2/ fт

1

2

3

4

5

6

"Мастер изме­ряет деталь"

"Преподаватель и ученик"

"В цехе у машины"

"У двери ди­ректора" "Человек в бюро" "Улыбающийся юноша"

106

102

108

50

99

115

96,67

96,67

96,67

96,67

96,67

96,67

9,33

5,33

11,33

-46,67

2,33

18,33

87,05

28,41

128,37

2178,09

5,43

335,99

0,90

0,29

1,33

22,53

0,06

3,48

Суммы

580

0

28,59

По Табл. IX Приложения 1 определяем критические значения χ2 для v=5:

Построим "ось значимости".

χ2эмп = 28,59

χ2эмп > χ2кр

Ответ: H0 отклоняется. Принимается H1. Распределение реак­ций "надежды на успех" по шести картинам методики Хекхаузена от­личается от равномерного распределения (р<0,01).

Б) Равномерно ли распределяются реакции "боязни неудачи" по шести картинам методики Хекхаузена?

H0: Распределение реакций "боязни неудачи" не отличается от равно­мерного распределения.

H1: Распределение реакций "боязни неудачи" отличается от равномер­ного распределения.

В данном случае количество наблюдений - это число реакций "боязни неудачи", следовательно, n=516; количество разрядов - это число стимульных картин, как и в предыдущем случае, следовательно, k=6. Определяем fтеор

fтеор =516/6=86

Количество степеней свободы v=k—1=6—1=5. Поправка на не­прерывность здесь тоже, естественно, не нужна.

Все дальнейшие расчеты проделаем по алгоритму в таблице.

Таблица 9.12

Расчет критерия при сопоставлении распределения реакций "боязни неудачи" по 6 картинам с равномерным распределением

Разряды-картины методики

Эмпирические частоты реакций "боязни неудачи" fэ

Теоретические частоты реакции "боязни неудачи" fт

fэ- fт

(fэ- fт)2

(fэ- fт)2/ fт

1

2

3

4

5

6

"Мастер изме­ряет деталь"

"Преподаватель и ученик"

"В цехе у машины"

"У двери ди­ректора" "Человек в бюро" "Улыбающийся юноша"

138

180

34

87

57

20

86

86

86

86

86

86

52

94

-52

1

-29

-66

2704

8836

2704

1

841

4356

31,44

102.74

31,44

0.01

9.78

50,65

Суммы

516

516

0

19442

226,06

Критические значения χ2 при v=5 по Таблице IX Приложения 1 нам уже известны:

χ2эмп > χ2кр

Ответ: H0 отклоняется. Принимается H1. Распределение прояв­лений "боязни неудачи" по шести стимульным картинам отличается от равномерного распределения (р<0,01).

Итак, реакции "надежды на успех" и реакции "боязни неудачи" неравномерно проявляются в ответ на 6 стимульных картин. Однако это еще не означает, что эти картины являются неуравновешенными по направленности воздействия. Может оказаться так, по крайней мере теоретически, что одни и те же картины вызывают большинство реакций обоих типов, а другие картины почти не вызывают реакций или вызывают их достоверно меньше. В этом случае оба эмпирических распределения отличались бы от равномерного, но не различались бы между собой.

Проверим, различаются ли картины теперь уже не по количеству вы­зываемых реакций, а по их качеству, то есть вызывают ли одни картины скорее реакции "надежды на успех", а другие - реакции "боязни неудачи"