- •Глава 6 метод ранговой корреляции
- •6.1. Обоснование задачи исследования согласованных действий
- •6.2. Коэффициент ранговой корреляции rs Спирмена
- •Алгоритм 20 Расчет коэффициента ранговой корреляции Спирмена rs.
- •Глава 7 дисперсионный анализ
- •7.1. Понятие дисперсионного анализа
- •7.2. Подготовка данных к дисперсионному анализу
- •1) Создание комплексов
- •2) Уравновешивание комплексов
- •3) Проверка нормальности распределения результативного признака.
- •4) Преобразование эмпирических данных с целью упрощения расчетов
- •7.3. Однофакторный дисперсионный анализ для несвязанных выборок
- •7.4. Дисперсионный анализ для связанных выборок
- •Глава 8 дисперсионный двухфакторный анализ
- •8.1. Обоснование задачи по оценке взаимодействия двух факторов
- •8.2. Двухфакторный дисперсионный анализ для несвязанных выборок
- •8.3. Двухфакторный дисперсионный анализ для связанных выборок
- •Глава 9 решения задач с комментариями
- •9.1. Рекомендации по решению задач
- •9.2. Решения задач Главы 2
- •9.3. Решения задач Главы 3
- •Вопрос 1: Ощущаются ли участниками значимые сдвиги в уровне владения каждым из трех навыков после тренинга?
- •Вопрос 2: Произошли ли по трем видам навыков разные сдвиги или эти сдвиги для разных навыков примерно одинаковы?
- •Вопрос 3: Уменьшается ли расхождение между "идеальным" и реальным уровнями владения навыками после тренинга?
- •9.4. Решения задач Главы 4
- •Вопрос 1: Можно ли утверждать, что разные картины методики Хекхаузена обладают разной побудительной силой в отношении мотивов: а) "надежда на успех"; б) "боязнь неудачи"?
- •Вопрос 2: Можно ли считать стимульный набор методики Хекхаузена неуравновешенным по направленности воздействия?
- •Вопрос 1: Можно ли утверждать, что распределение запретов не является равномерным?
- •Вопрос 2: Можно ли утверждать, что запрет "Не проси" встречается достоверно чаще остальных?
- •Вопрос 1: Различаются ли распределения предпочтений, выявленные по каждому из четырех типов мужественности, между собой?
- •Вопрос 2. Можно ли утверждать, что предпочтение отдается какому-то одному или двум типам мужественности? Наблюдается ли какая-либо групповая тенденция предпочтений?
- •9.5. Решения задач Главы 5
- •Вопрос 1: Можно ли считать, что милиционеры патрульно-постовой службы в большей степени склонны продолжить разговор с агрессором, чем другие граждане?
- •Вопрос 2: Можно ли утверждать, что милиционеры склонны отвечать агрессору более примирительно, чем гражданские лица?
4) Преобразование эмпирических данных с целью упрощения расчетов
Н.А. Плохинский указывает на возможность следующих преобразований:
1) все наблюдаемые значения можно разделить на одно и то же число k, например перевести показатели из миллиметров в сантиметры и т.п.;
2) все наблюдаемые значения можно умножить на одно и то же число k, например для того, чтобы избавиться от дробных значений;
3) от всех наблюдаемых значений можно отнять одно и то же число А, например наименьшее значение;
4) можно сделать двойное преобразование: из каждого значения вычесть число А, а полученный результат разделить на другое число k.
При всех этих преобразованиях результативного признака показатели соотношения дисперсий получаются точными и не требуют никаких поправок.
Средние величины изменяются, но их можно восстановить, умножая среднюю величину на число k или деля ее на k (варианты 1 и 2) или прибавляя к средней число А (вариант 3) и т. п. Стандартное отклонение изменяется только при введении множителя или делителя; полученный результат затем придется либо разделить на число к, либо умножить на него (Плохинский Н.А.,1964, с.34-36; Плохинский Н.А., 1970, с.71-72).
В последующих трех параграфах будет рассмотрен метод одно-факторного анализа в двух вариантах:
а) для дисперсионных комплексов, представляющих данные одной и той же выборки испытуемых, подвергнутой влиянию разных условий (разных градаций фактора);
б) для дисперсионных комплексов, в которых влиянию разных условий (градаций фактора) были подвергнуты разные выборки испытуемых.
Первый вариант называется однофакторным дисперсионным анализом для связанных выборок, второй - для несвязанных выборок.
Все предложенные алгоритмы расчетов предназначены для равномерных комплексов, где в каждой ячейке представлено одинаковое | число наблюдений.
7.3. Однофакторный дисперсионный анализ для несвязанных выборок
Назначение метода
Метод однофакторного дисперсионного анализа применяется в тех |случаях, когда исследуются изменения результативного признака под [влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвергаются разные выборки испытуемых. Градаций фактора должно быть не менее трех4.
Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса.
Описание метода
Работу начинаем с того, что представляем полученные данные в виде столбцов индивидуальных значений. Каждый из столбцов соответствует тому или иному из изучаемых условий (см. Табл. 7.2).
После этого нам нужно просуммировать индивидуальные значения по столбцам и суммы возвести в квадрат.
Суть метода состоит в том, чтобы сопоставить сумму этих возведенных в квадрат сумм с суммой квадратов всех значений, полученных во всем эксперименте.
___________
4Градаций может быть и две, но в этом случае мы не сможем установить нелинейных зависимостей и более разумным представляется использование более простых критериев (см. главы 2 и 3).
Гипотезы
H0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы.
H1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.
Графическое представление метода для несвязанных выборок
На Рис. 7.2 показана кривая изменения объема воспроизведения слов при разной скорости их предъявления (см. Пример). Метод дисперсионного анализа позволяет определить, что перевешивает - тенденция, выраженная этой кривой, или вариативность признака внутри групп, которая на графике схематически изображена в виде диапазонов изменения признака от минимального значения к максимальному значению в каждой группе.
Рис. 7.2. Кривая изменения объема воспроизведения при повышении скорости предъявления слов; по каждому условию показаны диапазоны изменения признака (по данным Greene J., D'Olivera M., 1989)
Ограничения метода однофакторного дисперсионного анализа для несвязанных выборок
1. Однофакторный дисперсионный анализ требует не менее трех градаций фактора и не менее двух испытуемых в каждой градации.
2. Должно соблюдаться правило равенства дисперсий в каждой ячейке дисперсионного комплекса. Условие равенства дисперсий выполняется при использовании предлагаемой схемы расчета за счет выравнивания
количества наблюдений в каждом из условий (градаций). Правомерность этого методического приема была обоснована Г.Шеффе (1980).
3. Результативный признак должен быть нормально распределен в исследуемой выборке.
Правда, обычно не указывается, идет ли речь о распределении I признака во всей обследованной выборке или в той ее части, которая [составляет дисперсионный комплекс.
Характерно, что зарубежные руководства, в общем ссылаясь на необходимость нормального распределения данных для дисперсионного анализа, при рассмотрении конкретных схем и примеров к этому вопросу уже не возвращаются и никаких данных о распределении признака в выборке в целом или в той ее части, которая составляет дисперсионный комплекс, не приводят (см; McCall R., 1970; Welkowitz J., Ewen R.B., | Cohen J., 1982; Greene J., D'Olivera M., 1989).
Рассмотрим схему дисперсионного однофакторного анализа для несвязанных выборок, предлагаемую в руководстве J.Greene, M.D'Olivera (1989) с использованием примера этих авторов.
Пример
Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в Табл. 7.2.
Таблица 7.2 Количество воспроизведенных слов (по: J.Greene, M.D'Olivera, 1989,p.99)
№ испытуемого |
Группа 1: низкая скорость |
Группа 2: средняя скорость |
Группа 3: высокая скорость |
1 |
8 |
7 |
4 |
2 |
7 |
8 |
5 |
3 |
9 |
5 |
3 |
4 |
5 |
4 |
6 |
5 |
6 |
6 |
2 |
6 |
8 |
7 |
4 |
Суммы |
43 |
37 |
24 |
Средние |
7,17 |
6,17 |
4,00 |
Общая сумма |
104 |
Поскольку сопоставляются разные группы, любые различия в показателях между разными условиями предъявления слов - это в то же время различия между группами испытуемых. Однако всякие различия между испытуемыми внутри каждой группы объясняются какими-то Другими, не относящимися к делу переменными, будь то индивидуальные различия между отдельными испытуемыми или неконтролируемые факторы, заставляющие их реагировать различным образом. Критерий F позволяет проверить гипотезы:
H0: Различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы.
H1: Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы. Используя экспериментальные значения, представленные в Табл. 7.2, установим некоторые величины, которые будут необходимы для расчета критерия F.
Таблица 7.3 Расчет основных величин для однофакторного дисперсионного анализа
Отметим разницу между ∑(хi2), в которой все индивидуальные значения сначала возводятся в квадрат, а потом суммируются, и (∑хi) 2где индивидуальные значения сначала суммируются для получения об- j щей суммы, а потом уже эта сумма возводится в квадрат.
Последовательность расчетов представлена в Табл. 7.4.
Часто встречающееся в этой и последующих таблицах обозначение SS - сокращение от "суммы квадратов" (sum of squares). Это сокращение чаще всего используется в переводных источниках (см., например: Гласе Дж., Стенли Дж., 1976).
SSфакт означает вариативность признака, обусловленную действием исследуемого фактора; SSобщ - общую вариативность признака; SSCA -вариативность, обусловленную неучтенными факторами, "случайную" или "остаточную" вариативность.
MS - "средний квадрат", или математическое ожидание суммы квадратов, усредненная величина соответствующих SS.
df - число степеней свободы, которое при рассмотрении непараметрических критериев мы обозначили греческой буквой v.
Таблица 7.4
Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок
Вывод: H0 отклоняется. Принимается H1. Различия в объеме [воспроизведения слов между группами являются более выраженными, [чем случайные различия внутри каждой группы (р<0,01). Итак, скорость предъявления слов влияет на объем их воспроизведения5. Вернемся к графику на Рис. 7.2. Мы видим, что, скорее всего, значимость различий объясняется тем, что показатель воспроизведения при самой высокой скорости предъявления слов (условие 3) гораздо ниже соответствующих показателей при средней и низкой скорости.