- •Глава 6 метод ранговой корреляции
- •6.1. Обоснование задачи исследования согласованных действий
- •6.2. Коэффициент ранговой корреляции rs Спирмена
- •Алгоритм 20 Расчет коэффициента ранговой корреляции Спирмена rs.
- •Глава 7 дисперсионный анализ
- •7.1. Понятие дисперсионного анализа
- •7.2. Подготовка данных к дисперсионному анализу
- •1) Создание комплексов
- •2) Уравновешивание комплексов
- •3) Проверка нормальности распределения результативного признака.
- •4) Преобразование эмпирических данных с целью упрощения расчетов
- •7.3. Однофакторный дисперсионный анализ для несвязанных выборок
- •7.4. Дисперсионный анализ для связанных выборок
- •Глава 8 дисперсионный двухфакторный анализ
- •8.1. Обоснование задачи по оценке взаимодействия двух факторов
- •8.2. Двухфакторный дисперсионный анализ для несвязанных выборок
- •8.3. Двухфакторный дисперсионный анализ для связанных выборок
- •Глава 9 решения задач с комментариями
- •9.1. Рекомендации по решению задач
- •9.2. Решения задач Главы 2
- •9.3. Решения задач Главы 3
- •Вопрос 1: Ощущаются ли участниками значимые сдвиги в уровне владения каждым из трех навыков после тренинга?
- •Вопрос 2: Произошли ли по трем видам навыков разные сдвиги или эти сдвиги для разных навыков примерно одинаковы?
- •Вопрос 3: Уменьшается ли расхождение между "идеальным" и реальным уровнями владения навыками после тренинга?
- •9.4. Решения задач Главы 4
- •Вопрос 1: Можно ли утверждать, что разные картины методики Хекхаузена обладают разной побудительной силой в отношении мотивов: а) "надежда на успех"; б) "боязнь неудачи"?
- •Вопрос 2: Можно ли считать стимульный набор методики Хекхаузена неуравновешенным по направленности воздействия?
- •Вопрос 1: Можно ли утверждать, что распределение запретов не является равномерным?
- •Вопрос 2: Можно ли утверждать, что запрет "Не проси" встречается достоверно чаще остальных?
- •Вопрос 1: Различаются ли распределения предпочтений, выявленные по каждому из четырех типов мужественности, между собой?
- •Вопрос 2. Можно ли утверждать, что предпочтение отдается какому-то одному или двум типам мужественности? Наблюдается ли какая-либо групповая тенденция предпочтений?
- •9.5. Решения задач Главы 5
- •Вопрос 1: Можно ли считать, что милиционеры патрульно-постовой службы в большей степени склонны продолжить разговор с агрессором, чем другие граждане?
- •Вопрос 2: Можно ли утверждать, что милиционеры склонны отвечать агрессору более примирительно, чем гражданские лица?
8.3. Двухфакторный дисперсионный анализ для связанных выборок
Назначение метода
Данный вариант двухфакторного дисперсионного анализа применяется в тех случаях, когда исследуется действие двух факторов на од-ну и ту же выборку испытуемых.
Описание метода
Допустим, мы измерили одни и те же показатели у одних и тех же испытуемых несколько раз - в разное время, в разных условиях, с помощью параллельных форм методики и т. п., и нам необходимо провести множественное сравнение показателей, изменяющихся при переходе от условия к условию. Критерий L Пейджа для анализа тенденций изменения признака и критерий χ2r Фридмана неприменимы, так как необходимо определить тенденцию изменения признака под влиянием двух факторов одновременно. Это позволяет сделать только дисперсионный анализ.
Фактически в данной модели дисперсионного двухфакторного анализа проверяются 4 гипотезы: о влиянии фактора А, о влиянии фактора В, о влиянии взаимодействия факторов А и В и о влиянии фактора индивидуальных различий.
В данном варианте дисперсионного анализа нам потребуются две рабочие таблицы, которые позволят рассчитывать сумму по разным комбинациям ячеек комплекса. Рассмотрим это на примере, являющемся продолжением примера из п. 3.3.
Пример
В выборке курсантов военного училища (юноши в возрасте от 18 до 20 лет) измерялась способность к удержанию физического волевого усилия на динамометре. В первый день эксперимента у них, наряду с другими показателями, измерялась мышечная сила каждой из рук. На второй день эксперимента им предлагалось выдерживать на динамометре мышечное усилие, равное '/2 максимальной мышечной силы данной руки. На третий день эксперимента испытуемым предлагалось проделать то же самое в парном соревновании на глазах у всей группы. Пары соревнующихся были подобраны таким образом, чтобы сила обеих рук у них примерно совпадала. Результаты экспериментов представлены в Табл. 8.5. Можно ли считать, что фактор соревнования в группе каким-то образом влияет на продолжительность удержания усилия? Подтверждается ли предположение о том, что правая рука более "социальна"?
Таблица 8.5
Длительность удержания усилия (сек/10) на динамометре правой и левой руками в разных условиях измерения (n=4)
Код имени испытуемого |
Наедине с экспериментатором (A1) |
В группе сокурсников (A2) | ||
Правая рука |
Левая рука |
Правая рука |
Левая рука | |
1 Л-в 2 С-с 3 С-в 4 К-в |
11 |
10 |
15 |
10 |
13 |
11 |
14 |
10 | |
12 |
8 |
8 |
5 | |
9 |
10 |
7 |
8 |
Заметим, что единицы измерения в Табл. 8.5 - это секунды, но в каждом случае количество секунд уменьшено в 10 раз. Это законный способ преобразования индивидуальных значений, направленный на облегчение расчетов. Для того, чтобы не оперировать трехзначными числами, мы можем разделить их на какую-либо константную величину или уменьшить их на какую-либо константную величину (подробнее см п. 7.2).
Преобразуем таблицу индивидуальных значений в две рабочие таблицы двухфакторного дисперсионного комплекса для связанных выборок (Табл. 8.6 и 8.7). Мы видим, что здесь приведены суммы индивидуальных значений отдельно по градациям фактора А (вне группы - в группе) и по градациям фактора В (правая рука - левая рука), по сочетаниям градаций А1В1, А1В2, А2В1, А2В2, а также суммы всех индивидуальных значений каждого испытуемого и общие суммы.
Таблица 8.6 Двухфакторный дисперсионный комплекс по оценке влияния фактора А (вне группы - в группе) и фактора В (правая - левая рука) на длительность удержания физического волевого усилия (сек/10) - вариант I
Код имени испытуемого |
A1 - вне группы |
А2 - в группе |
Индивидуальные суммы всех 4-х значений | ||||||||
B1 |
B2 |
Индивидуальные суммы по A1 (В1+В2) |
B1 |
B2 |
Индивидуальные суммы по А2 (В1+В2) | ||||||
1. Л-в 2. С-с 3. С-в 4. К-в |
11 13 12 9 |
10 11 8 10 |
21 24 20 19 |
15 14 8 7 |
10 10 5 8 |
25 24 13 15 |
46 48 33 34 | ||||
Суммы по ячейкам |
45 |
39 |
|
44 |
33 |
| |||||
Суммы по града- циям At и А? |
84 |
|
77 |
| |||||||
Общая сумма |
161 |
Таблица 8.7
Двухфакторный дисперсионный комплекс по оценке влияния факторов А и В на длительность физического волевого усилия (сек/10) - вариант II
Код имени испытуемого |
B1 – правая рука |
B2 – левая рука |
Индивидуальные суммы всех 4-х значений | ||||||||
A1 |
A2 |
Индивидуальные суммы по B1 (A1+A2) |
A1 |
A2 |
Индивидуальные суммы по B2 (A1+A2) | ||||||
1. Л-в 2. С-с 3. С-в 4. К-в |
11 13 12 9 |
15 14 8 7 |
26 27 20 16 |
10 11 8 10 |
10 10 5 8 |
20 21 13 18 |
46 48 33 34 | ||||
Суммы по ячейкам |
45 |
44 |
|
39 |
33 |
| |||||
Суммы по града- циям At и А? |
89 |
|
72 |
| |||||||
Общая сумма |
161 |
Мы видим, что в Табл. 8.7 фактически только две ячейки комплекса поменялись местами: A1B2 и A2B1. Это позволяет нам с большей легкостью подсчитать суммы по градациям B1 и В2. Если бы 'мы пользовались только Табл. 8.6, то нам пришлось бы подсчитывать их "через столбец" и, кроме того, трудно было бы их куда-то подходящим образом записать. В дальнейшем при расчетах мы всякий раз будем указывать, к какой таблице лучше обратиться для извлечения нужных сумм, первой (I) или второй (II).
Установим некоторые величины, которые будут необходимы для расчёта критериев F.
Таблица 8.8
Величины, необходимые для расчета критериев F в двухфакторном дисперсионном анализе для связанных выборок
Теперь при расчетах будем лишь подставлять уже подсчитанные значения тех или иных величин. В случае, если какой-то из шагов в алгоритме расчетов будет не вполне ясен, можно вернуться к Табл. 8.8 и восстановить процедуры расчетов, или к Табл. 8.6 и Табл. 8.7, для того, чтобы вспомнить, почему мы подставляем в формулу ту или иную конкретную величину.
_____________
На самом деле в эксперименте участвовало 20 человек. В дисперсионный комплекс случайным образом отобраны 4 из них в целях упрощения расчетов. Результаты дисперсионного анализа по такой "усеченной" выборке совпадают с данными обработки всей выборки с помощью критерия χ2r.
Таблица 8.9
Последовательность операций в двухфакторном дисперсионном анализе для связанных выборок
Мы видим, что влияние факторов А и В, как каждого в отдельности, так и в их взаимодействии, незначимо. В то же время фактор индивидуальных различий между испытуемыми (Fи) оказался значимым (р<0,05). Мы видим из формы приведенного алгоритма, что этот индивидуальный источник вариативности с самого начала учитывается практически как третий фактор вариативности признака. Критерий F для факторов А и В вычисляется как отношение вариативности между градациями факторов к вариативности между испытуемыми в этих градациях.
На Рис. 8.3 индивидуальные изменения величин длительности физического волевого усилия представлены графически.
Рис. 8.3. Индивидуальные изменения длительности физического волевого усилия по четырем испытуемым
Как видно из Рис. 8.3, у одного испытуемого выше показатели по левой руке, у трех других - по правой. При измерении вне группы индивидуальные кривые ближе друг к другу, при измерениях в группе они расходятся. Можно было бы говорить об увеличении разброса индивидуальных значений при измерении длительности физического волевого усилия в группе, в атмосфере соревнования. Однако, несмотря на название, дисперсионный анализ выявляет влияние фактора не на рассеивание индивидуальных значений, а на среднюю их величину. Влияние же фактора на рассеивание признака можно уловить с помощью других критериев, в том числе непараметрических (Суходольский Г.В., 1972, с.341).
И все же представим полученный результат в принятой форме изменения средних значений по градациям факторов (Рис. 8.4).
Рис. 8.4. Изменения средних величин длительности физического волевого усилия при переходе от индивидуальных замеров к групповым (правая рука - сплошная линия, левая рука - пунктирная линия)
Если исследователя интересует в большей степени второй вопрос данной задачи, связанный с проверкой предположения о том, что правая рука более "социальна", то он может представить данные в иной группировке (Рис. 8.5).
Рис. 8.5. Изменения средних величин длительности физического волевого усилия при переходе от правой руки к левой (сплошная линия - измерения вне группы, пунктирная линия - измерения в группе)
Мы видим, что во втором, групповом, замере снижаются показатели и по правой, и по левой руке, но все же правая рука "держится" почти на уровне первого замера, в то время как левая рука в большей степени "сдается" под влиянием усталости в группе, чем вне группы. Можно было бы подтвердить предположение о большей "социальности правой руки, большая стабильность которой, возможно, отражает стремление поддержать "лицо" в ситуации соревнования в группе, но выявленные тенденции, как мы убедились, незначимы.
Ограничения двухфакторного дисперсионного анализа для связанных выборок
Все ограничения такие же, как и в модели для несвязанных выборок, с одним уточнением. Все испытуемые должны пройти все сочетания градаций двух факторов. Этим достигается равномерность комплекса.
Итак, мы убедились, что двухфакторный дисперсионный анализ действительно позволяет нам оценить влияние двух факторов в их взаимодействии. Мы показали, что влияние одного фактора может оказаться различным при разных уровнях другого фактора, иногда различным вплоть до противоположности. Так, в примере о влиянии скорости предъявления слов и их длины на объем воспроизведения мы убедились в том, что фактор скорости при предъявлении коротких слов повышает результаты, а при предъявлении длинных слов - снижает результаты испытуемых.
Дисперсионный анализ позволяет также доказать, что влияние индивидуальных различий может оказаться сильнее экспериментальных или иных факторов, как это было продемонстрировано в последнем из примеров.
Более сложные схемы дисперсионного анализа позволяют анализировать совокупное действие трех, четырех и более факторов и получить еще более глубокие результаты.