- •Глава 6 метод ранговой корреляции
- •6.1. Обоснование задачи исследования согласованных действий
- •6.2. Коэффициент ранговой корреляции rs Спирмена
- •Алгоритм 20 Расчет коэффициента ранговой корреляции Спирмена rs.
- •Глава 7 дисперсионный анализ
- •7.1. Понятие дисперсионного анализа
- •7.2. Подготовка данных к дисперсионному анализу
- •1) Создание комплексов
- •2) Уравновешивание комплексов
- •3) Проверка нормальности распределения результативного признака.
- •4) Преобразование эмпирических данных с целью упрощения расчетов
- •7.3. Однофакторный дисперсионный анализ для несвязанных выборок
- •7.4. Дисперсионный анализ для связанных выборок
- •Глава 8 дисперсионный двухфакторный анализ
- •8.1. Обоснование задачи по оценке взаимодействия двух факторов
- •8.2. Двухфакторный дисперсионный анализ для несвязанных выборок
- •8.3. Двухфакторный дисперсионный анализ для связанных выборок
- •Глава 9 решения задач с комментариями
- •9.1. Рекомендации по решению задач
- •9.2. Решения задач Главы 2
- •9.3. Решения задач Главы 3
- •Вопрос 1: Ощущаются ли участниками значимые сдвиги в уровне владения каждым из трех навыков после тренинга?
- •Вопрос 2: Произошли ли по трем видам навыков разные сдвиги или эти сдвиги для разных навыков примерно одинаковы?
- •Вопрос 3: Уменьшается ли расхождение между "идеальным" и реальным уровнями владения навыками после тренинга?
- •9.4. Решения задач Главы 4
- •Вопрос 1: Можно ли утверждать, что разные картины методики Хекхаузена обладают разной побудительной силой в отношении мотивов: а) "надежда на успех"; б) "боязнь неудачи"?
- •Вопрос 2: Можно ли считать стимульный набор методики Хекхаузена неуравновешенным по направленности воздействия?
- •Вопрос 1: Можно ли утверждать, что распределение запретов не является равномерным?
- •Вопрос 2: Можно ли утверждать, что запрет "Не проси" встречается достоверно чаще остальных?
- •Вопрос 1: Различаются ли распределения предпочтений, выявленные по каждому из четырех типов мужественности, между собой?
- •Вопрос 2. Можно ли утверждать, что предпочтение отдается какому-то одному или двум типам мужественности? Наблюдается ли какая-либо групповая тенденция предпочтений?
- •9.5. Решения задач Главы 5
- •Вопрос 1: Можно ли считать, что милиционеры патрульно-постовой службы в большей степени склонны продолжить разговор с агрессором, чем другие граждане?
- •Вопрос 2: Можно ли утверждать, что милиционеры склонны отвечать агрессору более примирительно, чем гражданские лица?
Глава 9 решения задач с комментариями
9.1. Рекомендации по решению задач
Лучше сначала попробовать решить задачу самостоятельно, выбрав критерий по алгоритму, приведенному в соответствующей главе.
Проверить правильность своего решения можно по ответам в настоящей главе.
Независимо от того, совпадает ли ваш ответ с приведенным в настоящей главе или нет, рекомендуется внимательно прочитать предлагаемое решение задачи. Дело в том, что в процессе анализа реальных исследовательских задач становится возможным проникнуть в те тонкости и дополнительные варианты использования статистических методов, которые в общем описании остаются "за кадром" рассмотрения.
Кроме того, способы интерпретации задач и тем более, интерпретации результатов также полнее раскрываются в описании решений, чем в формализованных изложениях процедур обработки.
9.2. Решения задач Главы 2
Решение задачи 1
Сопоставляются 2 выборки испытуемых. Следовательно, мы выбираем один из двух критериев: Q Роэенбаума или U Манна-Уитни.
Поскольку n1, n2<11, критерий Q не может быть использован (см. Алгоритм 7). Будем использовать критерий U Манна-Уитни. Если же он окажется бессильным выявить достоверные различия между группами, обратимся к угловому преобразованию фишера - φ*.
Гипотезы лучше сформулировать после подсчета ранговых сумм. Предполагается, что в группе протагонистов показатели сокращения дистанции с оппонентами должны быть выше, чем в группе суфлеров, которые действовали лишь рационально, не вживаясь в роль оппонента. Однако лучше вначале определить, в какой из групп показатели не теоретически, а реально выше.
Будем действовать по алгоритму. Проранжируем все значения так, как если бы они принадлежали к одной общей выборке, а затем построим таблицу, в которой будут представлены индивидуальные значения и их ранги отдельно по двум группам (Табл. 9.1).
Таблица 9.1
Подсчет ранговых сумм по показателю сокращения психологической дистанции в группах протагонистов и суфлеров
Группа 1: протагонисты (n1=7) |
Группа 2: суфлеры (n2=7) | |||
Показатель |
Ранг |
Показатель |
Ранг | |
75 |
14 |
|
| |
50 |
13 |
|
| |
30 |
11 |
30 |
11 | |
30 - |
11 |
|
| |
25 |
8,5 |
25 |
8,5 | |
20 |
6,5 |
20 |
6,5 | |
|
|
15 |
5 | |
10 |
3 |
10 |
3 | |
|
|
10 |
3 | |
|
|
5 |
1 | |
Суммы |
240 |
67 |
115 |
38 |
Средние |
34,29 |
|
16,43 |
|
Мы видим, что теоретические ожидания подтверждаются: в группе суфлеров ранговая сумма меньше.
Проверим, совпадает ли общая сумма рангов с расчетной величиной:
∑ Ri = 67+38=105
Суммы совпадают. Мы можем перейти к формулированию гипотез.
H0: Группа протагонистов (реальных исполнителей роли петербуржцев) не превосходит группы суфлеров по показателю сокращения психологической дистанции с оппонентами.
H1: Группа протагонистов превосходит группу суфлеров по показатели сокращения психологической дистанции с оппонентами.
Определяем эмпирическое значение U:
Поскольку в данном случае п1=п2, нам нет необходимости на всякий случай подсчитывать значение U для второй ранговой суммы. Определим I критические значение U по Табл. II Приложения 1 для п1=7, п2=7:
Критерий U - один из трех критериев, в которых меньшее значение свидетельствует о больших различиях. Для того, чтобы понять, достоверный ли мы получили результат, целесообразно начертить "ось значимости".
Это значение уже не попадает в "зону незначимости", но еще не попадает в "зону значимости". Но мы помним, что нас может удовлетворить и результат, соответствующий низшему порогу значимости: р≤0,05.
Uэмп<Uкр (р<0,05)
Ответ: H0 отклоняется. Группа протагонистов превосходит группу суфлеров по показателю сокращения психологической дистанции с оппонентами (р<0,05).
Эти данные могли бы использоваться как еще одно подтверждение идеи Дж. Л. Морено о том, что принятие на себя роли оппонента способствует сближению с ним, если бы мы были уверены, что, во-первых, на роль протагонистов не вызвались участники изначально более расположенные к сближению с оппонентами, и что, во-вторых, испытуемые имели в виду одну и ту же дистанцию, когда определяли у себя процент ее сокращения. Впрочем, второе из этих ограничений распространяется и на большинство других шкал самооценки: мы не можем быть полностью уверены, что испытуемые оценивают у себя одно и то же качество или признак, как бы тщательно мы его ни определяли.
Данная задача является также примером сопоставления сдвигов в двух независимых выборках (см. параграф 3.1, Табл. 3.1).
Решение задачи 2
Поскольку в обеих выборках n1, n2>11 и диапазоны разброса значений в двух выборках не совпадают между собой, мы можем воспользоваться самым простым критерием для сопоставления двух выборок -критерием Q Розенбаума. Объемы выборок различаются менее чем на 10 человек, так что ограничение о примерном равенстве выборок также не препятствует нам.
Данные в Табл. 2.10 уже упорядочены по возрастанию признака. Первым, более высоким, рядом является ряд значений в мужской выборке.
Средняя величина тоже выше в выборке мужчин.
Сформулируем гипотезы.
H0: При обращении в службу знакомств мужчинам приходится преодолевать не более интенсивное внутреннее сопротивление, чем женщинам.
H1: При обращении в службу знакомств мужчинам приходится преодолевать более интенсивное внутреннее сопротивление, чем женщинам.
Сопоставим ряды значений для определения S1 и S2.
В Табл. 9.2 отмечены два интересующих нас значения: максимальное значение 2-го ряда (max 2) и минимальное значение 1-го ряда (min 1).
Определим S1, как количество значений 1-го ряда, которые превышают максимальное значение 2-го ряда: S1=5.
Определяем S2, как количество значений 2-го ряда, которые меньше минимального значения 1-го ряда: S2=5.
Вычисляем эмпирическое значение Q как суммы S1 и S2:
Q=S1+S2=5+5=10
По Табл. I Приложения 1 определяем критические значения Q при n1=17, n2=23:
Таблица 9.2 Расчет критерия Q при сопоставлении мужской (n1=17) и женской (n2=23) выборок по показателю интенсивности внутреннего сопротивления при обращении в службу знакомств
Группа 1 – мужчины (n1=17) |
Группа 2 - женщины (n2=23) |
81 |
|
80 |
|
S1 73 |
|
72 |
|
72 |
|
|
max 2 70 |
69 |
|
69 |
|
|
66 |
|
66 |
65 |
|
65 |
|
|
63 |
|
63 |
62 |
61 |
60 |
60 |
54 |
54 |
54 |
|
|
47 |
43 |
43 |
|
41 |
|
40 |
|
39 |
|
38 |
|
38 |
|
35 |
30 |
30 |
|
27 |
26 |
|
26 min 1 |
|
|
25 |
|
23 |
|
17 S2 |
|
10 |
|
9 |
Суммы 1001 |
965 |
Средние 58,89 |
41,96 |
Ответ: H0 отвергается. Принимается H1. При обращении в службу знакомств мужчинам из исследованной выборки пришлось преодолеть более мощное внутреннее сопротивление, чем женщинам.
Решение задачи 3
Поскольку мы сопоставляем 4 группы испытуемых, нам нужно выбирать между критерием тенденций S Джонкира и критерием Н Крускала-Уоллиса. В таких случаях мы должны сначала проверить, есть ли возможность применить первый из этих критериев, S, поскольку он позволяет не только выявить изменения, но и подтвердить направление этих изменений. В данном случае количество групп (с) меньше 6, количество испытуемых в каждой группе (n) меньше 10, при этом все группы численно равны. Следовательно, с формальной точки зрения критерий тенденций S применим. Вместе с тем, как мы можем определить по Табл. 2.11, показатели по фактору N при переходе от группы к группе изменяются не однонаправленно: сначала они возрастают, но в последней, четвертой, возрастной группе снижаются. На самом деле перед нами скорее не прямолинейная, а криволинейная зависимость (Рис. 9.1).
Рис. 9.1. Соотношение диапазонов значении и средних величин в четырех возрастных группах испытуемых по фактору N 16-факторного личностного опросника Р. Б. Кеттел-ла; для каждого диапазона указаны минимальное и максимальное значение в "сырых' баллах
Мы можем изменить последовательность расположения групп, упорядочив их по нарастанию значений фактора N, для чего придется поменять местами 4-ю и 3-ю группу.
Сформулируем гипотезы.
H0: Тенденция возрастания значений по фактору N при переходе от группы к группе в последовательности 1-2-4-3 является случайной.
H1: Тенденция возрастания значений по фактору N при переходе от группы к группе в последовательности 1-2-4-3 не является случайной.
Далее будем действовать по алгоритму 6 (Табл. 9.3).
Таблица 9.3
Расчет критерия S при сопоставлении разных возрастных групп по фактору N из ^6-факторного личностного опросника Р. Б. Кеттелла
№№ испыту- емых |
Группа 1: 26-31 год (n1=7) |
Группа 2: 32-37 лет (n2=7) |
Группа 3 (ранее 4): 46-52 годa (n3=7) |
Группа 4 (ранее 3): 38-42 года (n4=7) | ||||
Индивиду- альные значения |
Количество более высоких значениий справа |
Индивиду- альные значения |
Количестве более высоких значений справа |
Индивиду- альные значения |
Количество более высоких значений справа |
Индивиду- альные значения |
Количество более высоких значений справа | |
l |
2 |
(21) |
7 |
(14) |
9 |
(5) |
8 |
(0) |
2 |
5 |
(21) |
8 |
(13) |
9 |
(5) |
9 |
(0) |
3 |
7 |
(20) |
9 |
(Ю) |
10 |
(4) |
10 |
(0) |
4 |
8 |
(18) |
11 |
(7) |
И |
(4) |
12 |
(0) |
5 |
10 |
(12) |
12 |
(5) |
12 |
(3) |
14 |
(0) |
6 |
10 |
(12) |
12 |
(5) |
13 |
(3) |
14 |
(0) |
7 |
12 |
(5) |
12 |
(5) |
14 |
(1) |
16 |
(0) |
Суммы |
54 |
(109) |
71 |
(59) |
78 |
(25) |
83 |
(0) |
Средние |
7,71 |
|
10,14 |
|
11,11 |
|
11,86 |
|
Определим величину А, которая является суммой всех чисел в скобках. Для этого просуммируем все суммы чисел в скобках по столбцам:
А=109+59+25=193
Теперь определим величину В по формуле:
Определяем эмпирическое значение S:
Sэмп=2·A –B=2·193-294=92
По Табл. IV Приложения 1 определяем критические значения для данного количества групп (с=4) и данного количества испытуемых в каждой группе (n=7):
Ответ: H0 отклоняется. Тенденция возрастания значений по фактору N не является случайной. Фактор N, отражающий житейскую искушенность и проницательность, имеет тенденцию возрастать при переходе от первой группы ко второй, а затем к четвертой; самые высокие значения приходятся на третью возрастную группу (от 38 до 42 лет).
Можем ли мы трактовать полученный результат в том смысле, что в период от 26 до 42 лет житейская искушенность и проницательность повышается, а 46-52 - снижается?
Нет, возрастные изменения признака может по-настоящему подтвердить только лонгитюдинальное многолетнее исследование одних и тех же испытуемых. В данном же случае мы выявили различия между возрастными группами по методу возрастных срезов, поэтому их можно объяснить, например, тем, что последняя возрастная группа (46-52 года) вообще является носителем иных ценностей и иных способов взаимодействия между людьми, при которых прямота, безыскусность и простодушие предпочтительнее изысканности, изощренности и хитрости.
Однако, учитывая малый объем выборки и низкий уровень значимости выявленной тенденции (р<0,05), такие выводы было бы делать слишком смело. Это лишь гипотеза, нуждающаяся в дальнейшей проверке.
Характерно, что применение критерия Н Крускала-Уоллиса дает в решении этой задачи незначимый результат.
Применение критерия Н Крускала-Уоллиса для решения задачи 3
Вначале сформулируем гипотезы.
H0: Четыре возрастные группы испытуемых-руководителей промышленного предприятия не различаются по уровню фактора N из 16PF1.
H1: Четыре возрастные группы испытуемых-руководителей промышленного предприятия различаются по уровню фактора N из 16PF.
В Табл. 9.4 реализованы первые шаги алгоритма в подсчете критерия Н.
_________________
1 16PF - принятое в иностранной н отечественной литературе сокращение для обозначения 16-факторного личностного опросника Р.Б. Кеттелла.
Таблица 9.4
Подсчет ранговых сумм по четырем возрастным группам испытуемых по фактору N из 16PF (N=28)
Проверим, совпадает ли общая сумма рангов с расчетной величиной:
Суммы равны, мы можем переходить к расчету эмпирического значения Н. Все расчеты будем выполнять с точностью до сотых долей единицы.
Поскольку сопоставляется 4 группы испытуемых, а не 3, мы не можем воспользоваться специальной таблицей для критерия Н и должны обратиться к Табл. IX Приложения 1 для определения критических значений критерия χ2r. Для этого определим количество степеней свободы для данного количества групп (с=4):
v=c –1=4 –1=3
Hэмп< χ2кр.
Ответ: H0принимается. Четыре возрастные группы руководителей промышленного предприятия не различаются по уровню фактора N 16-факторного личностного опросника Р.Б. Кеттелла.
Итак, мы смогли убедиться в том, что критерий Н оказывается менее мощным, чем критерий S Джонкира. Это еще один аргумент в пользу того, чтобы во всех тех случаях, когда это возможно, при сопоставлении 3 и более выборок отдавать предпочтение критерию тенденций S.