Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

John Wiley & Sons - 2004 - Analysis of Genes and Genomes

.pdf
Скачиваний:
342
Добавлен:
17.08.2013
Размер:
11.18 Mб
Скачать

Proteins

A1.1 APPENDICES

The structures of the 20 amino acids that are encoded by the genetic code.

Hydrophobic

Hydrophilic

Basic

Acidic

Alanine

CH3

Proline

N C

Glycine

H

Tyrosine

CH2

OH

Lysine

CH2

CH2

CH2

CH2

NH3+

Aspartic acid

CH2

C

O O

Valine

 

Leucine

 

Isoleucine

CH

 

CH3

CH2

 

 

CH CH3

CH

3

 

CH

 

CH

3

CH2

 

 

 

 

 

 

 

 

 

 

CH

3

 

 

CH3

 

 

 

 

 

 

 

 

Methionine

Phenylalanine

 

Tryptophan

CH2

 

CH2

 

 

CH2

CH2

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

HN

 

 

 

 

 

 

 

Serine

 

Threonine

 

Cysteine

CH2

 

CH

OH

 

 

 

 

 

 

CH2

OH

 

CH3

 

 

 

SH

Asparagine

 

Glutamine

 

 

 

CH2

 

CH2

 

 

 

 

C

 

O

CH2

 

 

 

 

NH2

 

C

 

O

 

 

 

 

 

 

NH2

 

 

 

 

Arginine

Histidine

 

 

 

 

CH2

 

CH2

 

 

 

 

CH2

+HN

CH2

N

NH

CNH2+

NH2

Glutamic acid

 

 

 

 

 

 

CH2

 

 

Amino acid backbone

 

CH2

 

 

 

 

O

 

Amino group

H N+ CH C

 

 

C

Carboxyl group

 

 

3

 

 

 

 

 

 

 

 

O

O

 

 

 

 

O

 

 

 

 

 

R

Side chain

Analysis of Genes and Genomes

Richard J. Reece

2004 John Wiley & Sons, Ltd

ISBNs: 0-470-84379-9 (HB); 0-470-84380-2 (PB)

410 PROTEINS

A1.2

The α-helix and the β-sheet are common secondary structure protein elements. An α-helix from the Saccharomyces cerevisiae transcriptional activator protein Gcn4p. A β-sheet from concanavalin A. In each case, the views depicted show,

(A)all atoms of both the polypeptide backbone and the amino acid side chains,

(B)the residues of the polypeptide backbone only, and (C) a trace of the peptide backbone itself.

The a-helix

A

B

C

The b-sheet

 

 

A

 

 

B

 

 

C

 

 

PROTEINS 411

A1.3

The genetic code. The translational initiating methionine codon is highlighted in green and the termination codons are highlighted in red.

First position (5′ end)

Second position

 

 

 

U

 

C

 

 

 

A

 

 

G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UUU

 

 

 

Phe

UCU

 

 

 

 

 

UAU

 

 

Tyr

 

UGU

 

 

Cys

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UUC

 

UCC

 

 

 

UAC

 

 

 

UGC

 

 

C

U

 

 

 

 

Ser

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stop

 

 

 

 

Stop

A

UUA

 

Leu

UCA

 

UAA

 

 

 

UGA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UUG

 

 

UCG

 

 

 

 

UAG

 

 

Stop

 

UGG

 

 

Trp

G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CUU

 

 

 

 

CCU

 

 

 

 

 

CAU

 

 

His

 

CGU

 

 

 

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

CUC

 

 

CCC

 

 

 

CAC

 

 

 

CGC

 

 

 

C

 

 

Leu

 

Pro

 

 

 

 

 

 

 

Arg

 

 

CUA

 

CCA

 

 

CAA

 

 

Gln

 

CGA

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CUG

 

 

 

CCG

 

 

 

 

CAG

 

 

 

CGG

 

 

 

G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUU

 

 

 

ACU

 

 

 

 

 

AAU

 

 

Asn

 

AGU

 

 

Ser

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

AUC

 

Ile

ACC

 

 

 

AAC

 

 

 

AGC

 

 

C

 

 

 

Thr

 

 

 

 

 

 

 

 

 

AUA

 

 

ACA

 

 

AAA

 

 

Lys

 

AGA

 

 

Arg

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

 

 

AUG

 

 

 

 

Met

ACG

 

 

 

 

AAG

AGG

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GUU

 

 

 

GCU

 

 

 

 

GAU

 

 

Asp

 

GGU

 

 

 

U

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GUC

 

 

GCC

 

 

 

GAC

 

 

 

GGC

 

 

 

C

G

 

 

Val

 

Ala

 

 

 

 

 

 

 

Gly

 

GUA

 

GCA

 

 

GAA

 

 

Glu

 

GGA

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GUG

 

 

 

GCG

 

 

 

GAG

 

 

 

GGG

 

 

 

G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

end)′

position Third (3

Nobel prize winners

The following is a list of Nobel Prize winners whose work has had influence on, or is related to, the topics we have discussed in this book.

2002

Sydney Brenner, H. Robert Horvitz and John E. Sulston for their discoveries concerning genetic regulation of organ development and programmed cell death (Physiology or Medicine)

2001

Leland H. Hartwell, R. Tim Hunt and Paul M. Nurse for their discoveries of key regulators of the cell cycle (Physiology or Medicine)

1999

Gunter¨ Blobel for the discovery that proteins have intrinsic signals that govern their transport and localization in the cell (Physiology or Medicine)

1995

Edward B. Lewis, Christiane Nusslein¨-Volhard and Eric F. Wieschaus for their discoveries concerning the genetic control of early embryonic development (Physiology or Medicine)

1993

Richard J. Roberts and Phillip A. Sharp for their independent discoveries of split genes (Physiology or Medicine)

Kary B. Mullis for his invention of the polymerase chain reaction (PCR) method.

Michael Smith for his fundamental contributions to the establishment of oligonucleotide based, site directed mutagenesis and its development for protein studies (Chemistry)

Analysis of Genes and Genomes

Richard J. Reece

2004 John Wiley & Sons, Ltd

ISBNs: 0-470-84379-9 (HB); 0-470-84380-2 (PB)

414 NOBEL PRIZE WINNERS

1989

Sidney Altman and Thomas R. Cech for their discovery of catalytic properties of RNA (Chemistry)

J. Michael Bishop and Harold E. Varmus for their discovery of the cellular origin of retroviral oncogenes (Physiology or Medicine)

1987

Susumu Tonegawa for his discovery of the genetic principle for generation of antibody diversity (Physiology or Medicine)

1985

Michael S. Brown and Joseph L. Goldstein for their discoveries concerning the regulation of cholesterol metabolism (Physiology or Medicine)

1984

Niels K. Jerne, Georges J. F. Kohler¨ and Cesar´ Milstein for theories concerning the specificity in development and control of the immune system and the discovery of the principle for production of monoclonal antibodies (Physiology or Medicine)

1983

Barbara McClintock for her discovery of mobile genetic elements (Physiology or Medicine)

1982

Aaron Klug for his development of crystallographic electron microscopy and his structural elucidation of biologically important nuclei acid –protein complexes (Chemistry)

1980

Paul Berg for his fundamental studies of the biochemistry of nucleic acids, with particular regard to recombinant DNA.

Walter Gilbert and Frederick Sanger for their contributions concerning the determination of base sequences in nucleic acids (Chemistry)

1978

Werner Arber, Daniel Nathans and Hamilton O. Smith for the discovery of restriction enzymes and their application to problems of molecular genetics (Physiology or Medicine)

NOBEL PRIZE WINNERS

415

 

 

1975

David Baltimore, Renato Dulbecco and Howard M. Temin for their discoveries concerning the interaction between tumour viruses and the genetic material of the cell (Physiology or Medicine)

1972

Christian B. Anfinsen for his work on ribonuclease, especially concerning the connection between the amino acid sequence and the biologically active confirmation.

Stanford Moore and William H. Stein for their contribution to the understanding of the connection between chemical structure and catalytic activity of the active centre of the ribonuclease molecule (Chemistry)

1969

Max Delbruck,¨ Alfred D. Hershey and Salvador E. Luria for their discoveries concerning the replication mechanism and the genetic structure of viruses (Physiology or Medicine)

1968

Robert W. Holley, Har Gobind Khorana and Marshall W. Nirenberg for their interpretation of the genetic code and its function in protein synthesis. (Physiology or Medicine)

1966

Peyton Rous for his discovery of tumour inducing viruses (Physiology or Medicine)

1965

Francois¸ Jacob, Andre´ L. Woff and Jacoues Monod for their discoveries concerning genetic control of enzyme and virus synthesis (Physiology or Medicine)

1964

Dorothy C. Hodgkin for her determinations by X-ray techniques of the structures of important biochemical substances (Chemistry)

1962

Francis H. C. Crick, James D. Watson and Maurice H. F. Wilkins for their discoveries concerning the molecular structure of nuclear acids and its significance for information transfer in living material (Physiology or Medicine)

Max F. Perutz and John C. Kendrew for their studies of the structures of globular proteins (Chemistry)

416 NOBEL PRIZE WINNERS

1959

Severo Ochoa and Arthur Kornberg for their discovery of the mechanisms in the biological synthesis of ribonucleic acid and deoxyribonucleic acid (Physiology or Medicine)

1958

George W. Beadle and Edward L. Tatum for their discovery that genes act by regulating definite chemical events.

Joshua Lederberg for his discoveries concerning genetic recombination and the organization of the genetic material of bacteria (Physiology or Medicine)

Frederick Sanger for his work on the structure of proteins, especially that of insulin (Chemistry)

1957

Alexander R. Todd for his work on nucleotides and nucleotide co-enzymes (Chemistry)

1954

Linus C. Pauling for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances (Chemistry)

1946

James B. Sumner for his discovery that enzymes can be crystallized.

John H. Northrop and Wendell M. Stanley for their preparation of enzymes and virus proteins in a pure form (Chemistry)

Hermann J. Muller for the discovery of the production of mutations by means of X-ray irradiation (Physiology or Medicine)

1933

Thomas H. Morgan for his discoveries concerning the role played by the chromosome in heredity (Physiology or Medicine)

1902

H. Emil Fischer for his work on sugar and purine syntheses (Chemistry)

References

Abel, P.P., Nelson, R.S., De, B., Hoffmann, N., Rogers, S.G., Fraley, R.T. and Beachy, R.N. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 232, 738 – 743.

Abremski, K. and Hoess, R. (1984) Bacteriophage P1 site-specific recombination: purification and properties of the Cre recombinase protein. J. Biol. Chem., 259, 1509 – 1514.

Abremski, K., Hoess, R. and Sternberg, N. (1983) Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell, 32, 1301 – 1311.

Adams, M.D. et al. (2000) The genome sequence of Drosophila melanogaster. Science, 287, 2185 – 2195.

Adesnik, M., Salditt, M., Thomas, W. and Darnell, J.E. (1972) Evidence that all messenger RNA molecules (except histone messenger RNA) contain Poly(A) sequences and that the Poly(A) has a nuclear function. J. Mol. Biol., 71, 21 – 30.

Ahlquist, P. and Janda, M. (1984) cDNA cloning and in vitro transcription of the complete brome mosaic virus genome. Mol. Cell. Biol., 4, 2876 – 2882.

Allfrey, V., Falkner, R.M. and Mirsky, A.E. (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA, 51, 786 – 794.

Alt, F.W. and Baltimore, D. (1982) Joining of immunoglobulin heavy chain gene segments: implications from a chromosome with evidence of three D-JH fusions.

Proc. Natl. Acad. Sci. USA, 79, 4118 – 4122.

Amann, E., Brosius, J. and Ptashne, M. (1983) Vectors bearing a hybrid trp–lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene, 25, 167 – 178.

An, G., Costa, M.A. and Ha, S.B. (1990) Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell, 2, 225 – 233.

Anand, R., Villasante, A. and Tyler-Smith, C. (1989) Construction of yeast artificial chromosome libraries with large inserts using fractionation by pulsed-field gel electrophoresis. Nucleic Acids Res., 17, 3425 – 3433.

Arber, W. (1965) Host-controlled modification of bacteriophage. Annu. Rev. Microbiol., 19, 365 – 378.

Archibald, A.L., McClenaghan, M., Hornsey, V., Simons, J.P. and Clark, A.J. (1990) High-level expression of biologically active human α1-antitrypsin in the milk of transgenic mice. Proc. Natl. Acad. Sci. USA, 87, 5178 – 5182.

Analysis of Genes and Genomes

Richard J. Reece

2004 John Wiley & Sons, Ltd

ISBNs: 0-470-84379-9 (HB); 0-470-84380-2 (PB)

Соседние файлы в предмете Генетика