Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Bioregenerative Engineering Principles and Applications - Shu Q. Liu

..pdf
Скачиваний:
119
Добавлен:
10.08.2013
Размер:
26.55 Mб
Скачать

726 VASCULAR REGENERATIVE ENGINEERING

15.16. Construction of Cell-Integrated Arterial Substitutes with Biodegradable Polymers

Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA: Hemocompatibility evaluation of poly(glycerolsebacate) in vitro for vascular tissue engineering, Biomaterials 27(24):4315–24, Aug 2006.

Yang J, Motlagh D, Webb AR, Ameer GA: Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering, Tissue Eng 11(11–12):1876–86, Nov–Dec 2005.

Jeremy JY, Bulbulia R, Johnson JL, Gadsdon P, Vijayan V et al: A bioabsorbable (polyglactin), nonrestrictive, external sheath inhibits porcine saphenous vein graft thickening, J Thor Cardiovasc Surg 127(6):1766–72, June 2004.

Perego G, Preda P, Pasquinelli G, Curti T, Freyrie A et al: Functionalization of poly-L-lactic- co-epsilon-caprolactone: Effects of surface modification on endothelial cell proliferation and hemocompatibility, J Biomater Sci Polym Ed 14(10):1057–75, 2003.

Xu CY, Inai R, Kotaki M, Ramakrishna S: Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering, Biomaterials 25(5):877–86, Feb 2004.

Lee SH, Kim BS, Kim SH, Choi SW, Jeong SI et al: Elastic biodegradable poly(glycolide- co-caprolactone) scaffold for tissue engineering, J Biomed Mater Res 66A(1):29–37, July 2003.

Valente M, Pettenazzo E, Di Filippo L, Laborde F, Rinaldi S et al: Biodegradable polymer (D,L- lactide-epsilon-caprolactone) in aortic vascular prosthesis: morphological evaluation in an animal model, Int J Artif Organs 25(8):777–82, Aug 2002.

Teebken OE, Pichlmaier AM, Haverich A: Cell seeded decellularised allogeneic matrix grafts and biodegradable polydioxanone-prostheses compared with arterial autografts in a porcine model, Eur J Vasc Endovasc Surg 22(2):139–45, Aug 2001.

Langer R, Vacanti JP: Tissue engineering, Science 260:920–6, 1993.

Mayer JE Jr, Shinoka T, Shum-Tim D: Tissue engineering of cardiovascular structures, Cur Opin Cardiol 12:528–32, 1997.

Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S et al: Functional arteries grown in vitro, Science 284:489–93, 1999.

Hoerstrup SP, Kadner A, Breymann C, Maurus CF, Guenter CI et al: Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells, Ann Thor Surg 74:46–52, 2002.

15.17. Construction of Arterial Substitutes with Decellularized Collagen Matrix

Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO et al: Remodeling of an acellular collagen graft into a physiologically responsive neovessel, Nat Biotech 17:1083–6, 1999.

Liu SQ, Tieche C, Alkema PK: Neointima formation on elastic lamina and collagen matrix scaffolds implanted in the rat aorta, Biomaterials 25:1869–82, 2004.

Liu SQ, Alkema PK, Tieche C, Tefft BJ, Liu DZ et al: Negative regulation of monocyte adhesion to arterial elastic laminae by signal-regulatory protein alpha and SH2 domain-containing protein tyrosine phosphatase-1, J Biol Chem 280:39294–301, 2005.

Jernigan TW, Croce MA, Cagiannos C, Shell DH, Handorf CR et al: Small intestinal submucosa for vascular reconstruction in the presence of gastrointestinal contamination, Ann Surg 239(5): 733–8, May 2004.

Tieché C, Alkema PK, Liu SQ: Vascular elastic laminae: Anti-inflammatory properties and potential applications to arterial reconstruction, Front Biosci 9:2205–17, Sept 2004.

Hinek A: Biological roles of the non-integrin elastin/laminin receptor, J Biol Chem 377(7–8):471– 80, 1996.

BIBLIOGRAPHY 727

Hinek A, Wrenn DS, Mecham RP, Barondes SH: The elastin receptor: A galactoside-binding protein, Science 239(4847):1539–41, 1988.

Mecham RP, Hinek A, Entwistle R, Wrenn DS, Griffin GL et al: Elastin binds to a multifunctional 67-kilodalton peripheral membrane protein, Biochemistry 28(9):3716–22, May 1989.

Barocas VH, Girton TS, Tranquillo RT: Engineered alignment in media equivalents: Magnetic prealignment and mandrel compaction, J Biomech Eng 120:660–6, 1998.

Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO et al: Remodeling of an acellular collagen graft into a physiologically responsive neovessel, Natl Biotechnol 17:1083–6, 1999.

Inoue Y, Anthony JP, Lleon P, Young DM: Acellular human dermal matrix as a small vessel substitute, J Reconstr Microsurg 12:307–11, 1996.

Kanda K, Matsuda T: Mechanical stress induced cellular orientation and phenotypic modulations of 3-D cultured smooth muscle cells, ASAIO J 39:M86–90, 1994.

Lantz GC, Badylak SF, Hiles MC, Coffey AC, Geddes LA et al: Small intestinal submucosa as a vascular graft: A review, J Invest Surg 6:297–310, 1993.

Sandusky GE, Lantz GC, Badylak SF: Healing comparison of small intestine submucosa and ePTFE grafts in the canine carotid artery, J Surg Res 58:415–20, 1995.

Seliktar D, Nerem RM, Galis ZS: The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain, Ann Biomed Eng 29:923–34, 2001.

Tranquillo RT, Girton TS, Bromberek BA, Triebes TG, Mooradian DL: Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent, Biomaterials 17:349–57, 1996.

Wilson GJ, Yeger H, Klement P, Lee JM, Courtman DW: Acellular matrix allograft small caliber vascular prostheses, ASAIO Trans 36:M340–3, 1990.

Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H: Acellular matrix: A biomaterials approach for coronary artery bypass and heart valve replacement, Ann Thor Surg 60(Suppl 2):S353–8, 1995.

Adams S, van der Laan LJ, Vernon-Wilson E, Renardel de Lavalette C, Dopp EA et al: Signalregulatory protein is selectively expressed by myeloid and neuronal cells, J Immunol 161:1853–9, 1998.

Berg KL, Carlberg K, Rohrschneider LR, Siminovitch KA, Stanley ER: The major SHP-1-binding tyrosine phosphorylated protein in macrophages is a member of the KIR/LIR family and an SHP-1 substrate, Oncogene 17:2535–41, 1998.

Kharitonenkov A, Chen Z, Sures I, Wang H, Schilling J et al: A family of proteins that inhibit signaling through tyrosine kinase receptors, Nature 386:181–6, 1997.

Gardai SJ, Xiao YO, Dickinson M, Nick JA, Voelker DR et al: By binding SIRP α or calreticulin/ CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation, Cell 115:13–23, 2003.

Lienard H, Bruhns P, Malbec O, Fridman WH, Daeron M: Signal regulatory proteins negatively regulate immunoreceptor-dependent cell activation, J Biol Chem 274:32493–9, 1999.

Stofega MR, Argetsinger LS, Wang H, Ullrich A, Carter-Su C: Negative regulation of growth hormone receptor/JAK2 signaling by signal regulatory protein alpha, J Biol Chem 275:28222–9, 2000.

Oldenborg PA, Gresham HD, Lindberg FP: CD47-Signal regulatory protein α SIRP) regulates Fc7 and complement receptor-mediated phagocytosis, J Exp Med 193:855–62, 2001.

Yamao T, Noguchi T, Takeuchi O, Nishiyama U, Morita H et al: Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1, J Biol Chem 277:39833–9, 2002.

Oshima K, Ruhul Amin AR, Suzuki A, Hamaguchi M, Matsuda S: SHPS-1, a multifunctional transmembrane glycoprotein, FEBS Lett 519:1–7, 2002.

728 VASCULAR REGENERATIVE ENGINEERING

Veillette A, Thibaudeau E, Latour S: High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages, J Biol Chem 273:22719–28, 1998.

Neel BG, Gu H, Pao L: SH2-domain-containing protein-tyrosine phosphatases, in Handbook of Cell Signaling, Vol 1 Brandshaw RA, Dennis EA, eds, Academic Press, Amsterdam, 2004, pp 707–28.

Timms JF, Carlberg K, Gu H, Chen H, Kamatkar S et al: Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages, Mol Cell Biol 18:3838–50, 1998.

Tran KT, Rusu SO, Satish L, Wells A: Aging-related attenuation of EGF receptor signaling is mediated in part by increased protein tyrosine phosphatase activity, Exp Cell Res 289:359–67, 2003.

Roach TI, Slater SE, White LS, Zhang X, Majerus PW et al: The protein tyrosine phosphatase SHP-1 regulates integrin-mediated adhesion of macrophages, Curr Biol 8:1035–8, 1998.

David M, Chen HE, Goelz S, Larner AC, Neel BG: Differential regulation of the / interferonstimulated Jak/Stat pathway by the SH2 domain-contaning tyrosine phosphatase SHPTP-1, Mol Cell Biol 15:7050–8, 1995.

Klingmuller U, Lorenx U, Cantley LC, Neel BG, Lodish HF: Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals, Cell 80:729–38, 1995.

Zhang J, Somani AK, Siminovitch KA: Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signaling, Semin Immunol 12:361–78, 2000.

Dong Q, Siminovitch KA, Fialkow L, Fukushima T, Downey GP: Negative regulation of myeloid cell proliferation and function by the SH2 domain-containing tyrosine phosphatase-1, J Immunol 162:3220–30, 1999.

Kamata T, Yamashita M, Kimura M, Murata K, Inami M et al: Src homology 2 domain-containing tyrosine phosphatase SHP-1 controls the development of allergic airway inflammation, J Clin Invest 111:109–19, 2003.

Daigle I, Yousefi S, Colonna M, Green DR, Simon HU: Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils, Nat Med 8:61–7, 2002.

Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A, Soker S, Bischoff J, Mayer JE, Jr. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo, Nat Med 7:1035–1040, 2001.

Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 95:343–353, 2004.

15.18. Construction of Arterial Substitutes in vivo

Hoenig MR, Campbell GR, Rolfe BE, Campbell JH: Tissue-engineered blood vessels: Alternative to autologous grafts? Arterioscler Thromb Vasc Biol 25(6):1128–34, 2005.

Daly CD, Campbell GR, Walker PJ, Campbell JH: In vivo engineering of blood vessels, Front Biosci 9:1915–24, 2004.

Chue WL, Campbell GR, Caplice N, Muhammed A, Berry CL et al: Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts, J Vasc Surg 39(4):859–67, 2004.

15.19. Construction of Arterial Substitutes with Vascualr Cells and Matrix Components in vitro

Barocas VH, Girton TS, Tranquillo RT: Engineered alignment in media equivalents: Magnetic prealignment and mandrel compaction, J Biomech Eng 120:660–6, 1998.

L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA: A completely biological tissue-engineered human blood vessel, FASEB J 12:47–56, 1998.

L’Heureux N, Stoclet JC, Auger FA, Lagaud GJ, Germain L et al: A human tissue-engineered vascular media: A new model for pharmacological studies of contractile responses, FASEB J 15:515–24, 2001.

BIBLIOGRAPHY 729

Matsuda T, Miwa H: A hybrid vascular model biomimicking the hierarchic structure of arterial wall: Neointimal stability and neoarterial regeneration process under arterial circulation, J Thor Cardiovasc Surg 110:988–97, 1995.

Nerem RM, Seliktar D: Vascular tissue engineering, Annu Rev Biomed Eng 3:225–43, 2001.

Grassl ED, Oegema TR, Tranquillo RT: Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent, J Biomed Mater Res 60:607–12, 2002.

Grassl ED, Oegema TR, Tranquillo RT: A fibrin-based arterial media equivalent, J Biomed Mater Res A 66:550–61, 2003.

Ross JJ, Tranquillo RT: ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells, Matrix Biol 22:477–90, 2003.

15.20. Modulation of Growth and Function of Arterial Substitutes

McCloskey KE, Gilroy ME, Nerem RM: Use of embryonic stem cell-derived endothelial cells as a cell source to generate vessel structures in vitro, Tissue Eng 11(3–4):497–505, 2005.

Berglund JD, Nerem RM, Sambanis A: Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts, Tissue Eng 10(9–10):1526–35, 2004.

Butcher JT, Nerem RM: Porcine aortic valve interstitial cells in three-dimensional culture: Comparison of phenotype with aortic smooth muscle cells, J Heart Valve Dis 13(3):478–85, 2004.

Kladakis SM, Nerem RM: Endothelial cell monolayer formation: Effect of substrate and fluid shear stress, Endothelium 11(1):29–44, 2004.

Butcher JT, Penrod AM, Garcia AJ, Nerem RM: Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments, Arterioscler Thromb Vasc Biol 24(8):1429–34, 2004.

Cummings CL, Gawlitta D, Nerem RM, Stegemann JP: Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures, Biomaterials 25(17):3699–706, 2004.

Stegemann JP, Dey NB, Lincoln TM, Nerem RM: Genetic modification of smooth muscle cells to control phenotype and function in vascular tissue engineering, Tissue Eng 10(1–2):189–99, 2004.

Nerem RM, Ensley AE: The tissue engineering of blood vessels and the heart, Am J Transplant 4(Suppl 6):36–42, 2004.

McCloskey KE, Lyons I, Rao RR, Stice SL, Nerem RM: Purified and proliferating endothelial cells derived and expanded in vitro from embryonic stem cells, Endothelium 10(6):329–36, 2003.

Stegemann JP, Nerem RM: Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation, Ann Biomed Eng 31(4):391–402, 2003.

Stegemann JP, Nerem RM: Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in twoand three-dimensional culture, Exp Cell Res 283(2):146–55, 2003.

Nerem RM: Role of mechanics in vascular tissue engineering, Biorheology 40(1–3):281–7, 2003.

Braddon LG, Karoyli D, Harrison DG, Nerem RM: Maintenance of a functional endothelial cell monolayer on a fibroblast/polymer substrate under physiologically relevant shear stress conditions, Tissue Eng 8(4):695–708, Aug 2002.

Nerem RM, Seliktar D: Vascular tissue engineering, Annu Rev Biomed Eng 3:225–43, 2001.

Weinberg CB, Bell E: A blood vessel model constructed from collagen and cultured vascular cells, Science 231(4736):397–400, 1986.

Ilveskero S, Siljander P, Lassila R: Procoagulant activity on platelets adhered to collagen or plasma clot, Arterioscler Thromb Vasc Biolo 21(4):628–35, 2001.

Nerem RM, Seliktar D: Vascular tissue engineering, Annu Rev Biomed Eng 3:225–43, 2001.

730 VASCULAR REGENERATIVE ENGINEERING

15.21. Pathogenesis, Pathology, and Clinical Features of Hypertension

Lifton RP: Molecular genetics of human blood pressure variation, Science 272(5262):676–80, 1996.

Kaplan NM: Kaplan’s Clinical Hypertension, 9th ed, Lippincott Williams & Wilkins, Philadelphia, 2006.

Prisant ML: Hypertension in the Elderly, Humana Press, Totowa, NJ, 2005.

15.22. Animal Models of Renovascular Hypertension

Fung YC, Liu SQ: Change of residual strains in arteries due to hypertrophy caused by aortic constriction, Circ Res 65:1340–9, 1989.

Liu SQ, Fung YC: Relationship between hypertension, hypertrophy, and opening angle of zerostress state of arteries following aortic constriction, J Biomech Eng 111:325–35, 1989.

Liu SQ, Fung YC: Indicial functions of arterial remodeling in response to locally altered mechanical stress, Am J Physiol 270:H1323–33, 1996.

15.23. Conventional Treatment of Hypertension

Brunton LL, Lazo JS, Parker KL: Goodman & Gilman’s Pharmacological Basis of Therapeutics, 11th ed, McGraw-Hill New York, 2006.

Pacak K, Eisenhofer G: Endocrine Hypertension, Academy of Sciences, New York, 2002.

15.24. Molecular Engineering

Lifton RP: Molecular genetics of human blood pressure variation, Science 272:676–80, 1996.

Jeunemaitre X, Soubrier F, Kotelevetsev YV, Lifton RP, Williams CS et al: Molecular basis of human hypertension: Role of angiotensinogen, Cell 71:169–80, 1992.

Phillips MI: Gene therapy for hypertension: The preclinical data, Hypertension 38(3 Pt 2):543–8, 2001.

15.25. Nitric Oxide Synthase Gene

Lin KF, Chao L, Chao J: Prolonged reduction of high blood pressure with human nitric oxide synthase gene delivery, Hypertension 30:307–13, 1997.

Wang X, Cade R, Sun Z: Human eNOS gene delivery attenuates cold-induced elevation of blood pressure in rats, Am J Physiol Heart Circ Physiol 289(3):H1161–8, 2005.

Li L, Crockett E, Wang DH, Galligan JJ, Fink GD et al: Gene transfer of endothelial NO synthase and manganese superoxide dismutase on arterial vascular cell adhesion molecule-1 expression and superoxide production in deoxycorticosterone acetate-salt hypertension, Arterioscler Thromb Vasc Biol 22(2):249–55, 2002.

Pachori AS, Huentelman MJ, Francis SC, Gelband CH, Katovich MJ et al: The future of hypertension therapy: Sense, antisense, or nonsense? Hypertension 37(2 Pt 2):357–64, 2001.

Yu Q, Shao R, Qian HS, George SE, Rockey DC: Gene transfer of the neuronal NO synthase isoform to cirrhotic rat liver ameliorates portal hypertension, J Clin Invest 105(6):741–8, 2000.

Dominiczak AF, Negrin DC, Clark JS, Brosnan MJ, McBride MW et al: Genes and hypertension: From gene mapping in experimental models to vascular gene transfer strategies, Hypertension 35(1 Pt 2):164–72, 2000.

BIBLIOGRAPHY 731

Lin KF, Chao L, Chao J: Prolonged reduction of high blood pressure with human nitric oxide synthase gene delivery, Hypertension 30(3 Pt 1):307–13, 1997.

Cuevas P, Garcia-Calvo M, Carceller F, Reimers D, Zazo M et al: Correction of hypertension by normalization of endothelial levels of fibroblast growth factor and nitric oxide synthase in spontaneously hypertensive rats, Proc Natl Acad Sci USA 93(21):11996–2001, 1996.

15.26. Atrial Natriuretic Peptide Gene

Lin KF, Chao J, Chao L: Atrial natriuretic peptide gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in salt-sensitive rats, Hum Gene Ther 9:1429–38, 1998.

Kook H, Itoh H, Choi BS, Sawada N, Doi K et al: Physiological concentration of atrial natriuretic peptide induces endothelial regeneration in vitro, Am J Physiol Heart Circ Physiol 284(4): H1388–97, 2003.

Kiemer AK, Weber NC, Vollmar AM: Induction of IkappaB: Atrial natriuretic peptide as a regulator of the NF-kappaB pathway, Biochem Biophys Res Commun 295(5):1068–76, 2002.

de Bold AJ: Atrial natriuretic factor: A hormone produced by the heart, Science 230:767–70, 1985.

Greenberg BD, Bencen GH, Seilhamer JJ, Lewicki JA, Fiddes JC: Nucleotide sequence of the gene encoding human atrial natriuretic factor precursor, Nature 312:656–8, 1984.

John SWM, Krege JH, Oliver PM, Hagaman JR, Hodgin JB et al: Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension, Science 267:679–81, 1995.

Lang RE, Tholken H, Ganten D, Luft FC, Ruskoaho H et al: Atrial natriuretic factor—a circulating hormone simulated by volume loading, Nature 314:264–6, 1985.

Needleman P, Greenwald JE: Atriopeptin: A cardiac hormone intimately involved in fluid, electrolyte, and blood-pressure homeostasis, New Engl J Med 314:828–34, 1986.

Nemer M, Chamberland M, Sirois D, Argentin S, Drouin J et al: Gene structure of human cardiac hormone precursor, pronatriodilatin, Nature 312:654–6, 1984.

Human protein reference data base, Johns Hopkins University and the Institute of Bioinformatics, at http://www.hprd.org/protein.

15.27. Kallikrein

Azizi M, Boutouyrie P, Bissery A, Agharazii M, Verbeke F et al: Arterial and renal consequences of partial genetic deficiency in tissue kallikrein activity in humans, J Clin Invest 115:780–7, 2005.

Meneton P, Bloch-Faure M, Hagege AA, Ruetten H, Huang W et al: Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice, Proc Natl Acad Sci USA 98:2634–9, 2001.

Riegman PHJ, Vlietstra RJ, Suurmeijer L, Cleutjens CBJM, Trapman J: Characterization of the human kallikrein locus, Genomics 14:6–11, 1992.

Chao J, Chao L: Kallikrein gene therapy: A new strategy for hypertensive diseases, Immunopharmacology 36:229–36, 1997.

Dobrzynski E, Yoshida H, Chao J, Chao L: Adenovirus-mediated kallikrein gene delivery attenuates hypertension and protects against renal injury in deoxycorticosterone-salt rats, Immunopharmacology 44:57–65, 1999.

15.28. Antisense Oligodeoxynucleotides for Angiotensinogen mRNA

Wielbo D, Simon A, Phillips MI, Toffolo S: Inhibition of hypertension by peripheral administration of antisense oligodeoxynucleotides, Hypertension 28:147–51, 1996.

732 VASCULAR REGENERATIVE ENGINEERING

Tomita N, Morishita R, Higaki J, Aoki M, Nakamura Y et al: Transient decrease in high blood pressure by in vivo transfer of antisense oligodeoxynucleotides against rat angiotensinogen, Hypertension 26:131–6, 1995.

Makino K, Sugano M, Ohtsuka S, Sawada S: Intravenous injection with antisense oligodeoxynucleotides against angiotensinogen decreases blood pressure in spontaneously hypertensive rats, Hypertension 31:1166–70, 1998.

Tang X, Mohuczy D, Zhang CY, Kimura B, Galli SM et al: Intravenous angiotensinogen antisense in AAV-based vector decreases hypertension, Am J Physiol 277(6 Pt 2):H2392–9, 1999.

15.29. Antisense Oligodeoxynucleotides for Angiotensin II type 1 (AT1) Receptor mRNA

Phillips MI: Gene therapy for hypertension: The preclinical data, Hypertension 38(3 Pt 2):543–8, 2001.

Tang X, Mohuczy D, Zhang YC, Kimura B, Galli SM et al: Intravenous angiotensinogen antisense in AAV-based vector decreases hypertension, Am J Physiol 277(6 Pt 2):H2392–9, 1999.

Kagiyama S, Varela A, Phillips MI, Galli SM: Antisense inhibition of brain renin angiotensin system decreased blood pressure in chronic 2-kidney, 1-clip hypertensive rats, Hypertension 32:371–5, 2001.

Peng JF, Kimura B, Fregly MJ, Phillips MI: Reduction of cold-induced hypertension by antisense oligodeoxynucleotides to angiotensinogen mRNA and AT1 receptor mRNA in brain and blood, Hypertension 31:1317–23, 1998.

Gyurko R, Tran D, Phillips MI: Time course of inhibition of hypertension by antisense oligonucleotides targeted to AT1 angiotensin receptor mRNA in spontaneously hypertensive rats, Am J Hypertens 10:56S–62S, 1997.

Galli SM, Phillips MI: Angiotensin II AT1A receptor antisense lowers blood pressure in acute 2-kidney, 1-clip hypertension, Hypertension 38:674–8, 2001.

Iyer SN, Lu D, Katovich M, Raizada MK: Chronic control of high blood pressure in the spontaneously hypertensive rats by delivery of angiotensin type 1 receptor antisense, Proc Natl Acad Sci USA 93:9960–5, 1996.

Reaves PY, Gelband CH, Wang H, Yang H, Lu D et al: Permanent prevention of hypertension by angiotensin II type 1 receptor antisense gene therapy, Circ Res 86:E44–50, 1999.

15.30. Antisense Oligonucleotides for Adrenergic Receptor mRNA

a1A-Adrenergic Receptors

Chang DJ, Chang TK, Yamanishi SS, Salazar FHR, Kosaka AH et al: Molecular cloning, genomic characterization and expression of novel human alpha-1A-adrenoceptor isoforms, FEBS Lett 422:279–83, 1998.

Forray C, Bard JA, Wetzel JM, Chiu G, Shapiro E et al: The alpha-1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human alpha-1C subtype, Mol Pharm 45:703–8, 1994.

Hirasawa A, Horie K, Tanaka T, Takagaki K, Murai M et al: Cloning, functional expression and tissue distribution of human cDNA for the alpha-1C-adrenergic receptor, Biochem Biophys Res Commun 195:902–9, 1993.

Hirasawa A, Shibata K, Horie K, Takei Y, Obika K et al: Cloning, functional expression and tissue distribution of human alpha-1C-adrenoceptor splice variants, FEBS Lett 363:256–60, 1995.

Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH et al: Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: Sequence corrections and direct comparison with other species homologues, J Pharm Exp Ther 272:134–42, 1995.

BIBLIOGRAPHY 733

Tseng-Crank J, Kost T, Goetz A, Hazum S, Roberson KM et al: The alpha-1C-adrenoceptor in human prostate: Cloning, functional expression and localization to specific prostatic cell types, Br J Pharm 115:1475–85, 1995.

Weinberg DH, Trivedi P, Tan CP, Mitra S, Perkins-Barrow A et al: Cloning, expression and characterization of human alpha adrenergic receptors alpha-1A, alpha-1B, and alpha-1C, Biochem Biophys Res Commun 201:1296–304, 1994.

a1B-Adrenergic Receptors

Allen LF, Lefkowitz RJ, Caron MG, Cotecchia S: G-protein-coupled receptor genes as protooncogenes: Constitutively activating mutation of the alpha-1B-adrenergic receptor enhances mitogenesis and tumorigenicity, Proc Natl Acad Sci USA 88:11354–8, 1991.

Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T et al: Decreased blood pressure response in mice deficient of the alpha(1b)-adrenergic receptor, Proc Natl Acad Sci USA 94:11589–94, 1997.

Krushkal J, Xiong M, Ferrell R, Sing CF, Turner ST et al: Linkage and association of adrenergic and dopamine receptor genes in the distal portion of the long arm of chromosome 5 with systolic blood pressure variation, Hum Mol Genet 7:1379–83, 1998.

Loftus SK, Shiang R, Warrington JA, Bengtsson U, McPherson JD et al: Genes encoding adrenergic receptors are not clustered on the long arm of human chromosome 5, Cytogenet Cell Genet 67:69–74, 1994.

Lomasney JW, Cotecchia S, Lorenz W, Leung WY, Schwinn DA et al: Molecular cloning and expression of the cDNA for the alpha-1A-adrenergic receptor: The gene for which is located on human chromosome 5, J Biol Chem 266:6365–9, 1991.

Oakey RJ, Caron MG, Lefkowitz RJ, Seldin MF: Genomic organization of adrenergic and serotonin receptors in the mouse: Linkage mapping of sequence-related genes provides a method for examining mammalian chromosome evolution, Genomics 10:338–44, 1991.

Ramarao CS, Kincade Denker JM, Perez DM, Gaivin RJ, Riek RP et al: Genomic organization and expression of the human alpha-1B-adrenergic receptor, J Biol Chem 267:21936–45, 1992.

Yang-Feng TL, Xue F, Zhong W, Cotecchia S, Frielle T et al: Chromosomal organization of adrenergic receptor genes, Proc Natl Acad Sci USA 87:1516–20, 1990.

a1D-Adrenergic Receptors

Bruno JF, Whittaker J, Song J, Berelowitz M: Molecular cloning and sequencing of a cDNA encoding a human alpha-1A-adrenergic receptor, Biochem Biophys Res Commun 179:1485–90, 1991.

Esbenshade TA, Hirasawa A, Tsujimoto G, Tanaka T, Yano J et al: Cloning of the human alpha- 1D-adrenergic receptor and inducible expression of three subtypes in SK-N-MC cells, Mol Pharm 47:977–85, 1995.

Lomasney JW, Cotecchia S, Lorenz W, Leung WY, Schwinn DA et al: Molecular cloning and expression of the cDNA for the alpha-1A-adrenergic receptor: The gene for which is located on human chromosome 5, J Biol Chem 266:6365–9, 1991.

Weinberg DH, Trivedi P, Tan CP, Mitra S, Perkins-Barrow A et al: Cloning, expression and characterization of human alpha adrenergic receptors alpha-1A, alpha-1B, and alpha-1C, Biochem Biophys Res Commun 201:1296–304, 1994.

Wilkie TM, Chen Y, Gilbert DJ, Moore KJ, Yu L et al: Identification chromosomal location and genome organization of mammalian G-protein-coupled receptors, Genomics 18:175–84, 1993.

Adrenergic Receptors b1, b2, b3

Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC et al: Beta-AR signaling required for diet-induced thermogenesis and obesity resistance, Science 297:843–5, 2002.

734 VASCULAR REGENERATIVE ENGINEERING

Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ et al: Cloning of the cDNA for the human beta-1-adrenergic receptor, Proc Natl Acad Sci USA 84:7920–4, 1987.

Frielle T, Kobilka B, Lefkowitz RJ, Caron MG: Human beta-1- and beta-2-adrenergic receptors: Structurally and functionally related receptors derived from distinct genes, Trends Neurosci 11:321–4, 1988.

Jahns R, Boivin V, Hein L, Triebel S, Angermann CE et al: Direct evidence for a beta-1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy, J Clin Invest 113:1419–29, 2004.

Magnusson Y, Marullo S, Hoyer S, Waagstein F, Andersson B et al: Mapping of a functional autoimmune epitope on the beta(1)-adrenergic receptor in patients with idiopathic dilated cardiomyopathy, J Clin Invest 86:1658–63, 1990.

Mason DA, Moore JD, Green SA, Liggett SB: A gain-of-function polymorphism in a G-protein coupling domain of the human beta-1-adrenergic receptor, J Biol Chem 274:12670–4, 1999.

Mialet Perez J, Rathz DA, Petrashevskaya NN, Hahn HS, Wagoner LE et al: Beta-1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure, Nature Med 9:1300–5, 2003.

Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK: Cardiovascular and metabolic alterations in mice lacking both beta-1- and beta-2-adrenergic receptors, J Biol Chem 274:16701– 8, 1999.

Small KM, Wagoner LE, Levin AM, Kardia SLR, Liggett SB: Synergistic polymorphisms of beta-1- and alpha-2C-adrenergic receptors and the risk of congestive heart failure, New Engl J Med 347:1135–42, 2002.

Xu J, He J, Castleberry AM, Balasubramanian S, Lau AG et al: Heterodimerization of alpha-2A- and beta-1-adrenergic receptors, J Biol Chem 278:10770–7, 2003.

Large V, Hellstrom L, Reynisdottir S, Lonnqvist F, Eriksson P et al: Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function, J Clin Invest 100:3005–13, 1997.

Luttrell LM, Ferguson SSG, Daaka Y, Miller WE, Maudsley S et al: Beta-arrestin-dependent formation of beta-2 adrenergic receptor-Src protein kinase complexes, Science 283:655–61, 1999.

Maurice JP, Hata JA, Shah AS, White DC, McDonald PH et al: Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta-2-adrenergic receptor gene delivery, J Clin Invest 104:21–9, 1999.

Communal C, Singh K, Sawyer DB, Colucci WS: Opposing effects of β1- and β2-adrenergic receptors on cardiac myocyte apoptosis: role of pertussis toxin-sensitive G protein, Circulation 100:2210–12, 1999.

Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR et al: Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor, Science 264:582–6, 1994.

Engelhardt S, Hein L, Wiesmann F, Lohse MJ: Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice, Proc Natl Acad Sci USA 96:7059–64, 1999.

Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR et al: Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor, Science 264:582–6, 1994.

Dorn GW, Tepe NM, Lorenz JN, Davis MG, Koch WJ et al: Low and high transgenic expression of β2-adrenergic receptors differentially affects cardiac hypertrophy and function in Gαq overexpressing mice, Proc Natl Acad Sci USA 96:6400–5, 1999.

Maurice JP, Hata JA, Shah AS, White DC, McDonald PH et al: Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta-2-adrenergic receptor gene delivery, J Clin Invest 104:21–9, 1999.

BIBLIOGRAPHY 735

Steinberg SF: The molecular basis for distinct β-adrenergic receptor subtype actions in cardiomyocytes, Circ Res 85:1101–11, 1999.

Maurice JP, Hata JA, Shah AS, White DC, McDonald PH et al: Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary β2-adrenergic receptor gene delivery, J Clin Invest 104:21–9, 1999.

Kawahira Y, Sawa Y, Nishimura M, Sakakida S, Ueda H et al: Gene transfection of β2-adrenergic receptor into the normal rat heart enhances cardiac response to β-adrenergic agonist, J Thor Cardiovasc Surg 118:446–51, 1999.

Kawahira Y, Sawa Y, Nishimura M, Sakakida S, Ueda H et al: In vivo transfer of a β2-adrenergic receptor gene into the pressure-overloaded rat heart enhances cardiac response to β-adrenergic agonist, Circulation 98:II262–7, 1998.

Shah AS, Lilly RE, Kypson AP, Tai O, Hata JA et al: Intracoronary adenovirus-mediated delivery and overexpression of the β2-adrenergic receptor in the heart: Prospects for molecular ventricular assistance, Circulation 101:408–14, 2000.

Human protein reference data base, Johns Hopkins University and the Institute of Bioinformatics, at http://www.hprd.org/protein.