Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
основы технологии.doc
Скачиваний:
15
Добавлен:
13.05.2015
Размер:
2.74 Mб
Скачать

3.5. Проектирование преобразовательной системы

Проектирование преобразовательной системы представляет собой процесс пре­образования имеющейся информации в некоторое новое состояние - новый информа­ционный продукт, который называется проектом. В процессе проектирования также как и в процессах преобразования мате­риалов и энергии некоторая совокупность ис­ходных ресурсов (исходная информация) с помощью известных и вновь создающихся средств (методы, способы, процедуры проектирования) создается требуемый результат (новая информация - проект).

Любой процесс проектирования осуществляется в три этапа. Первый из них свя­зан с фор­мированием совокупности требований к результату проектирования и обо­значается как этап пред­проектных исследований. Второй этап имеет целью создание собственно проекта в виде описаний, схем, чертежей, алгоритмов, программ, расчетов и т.п. Третий заключительный этап проектирова­ния предполагает оценивание качества проекта путем проведения измерений, испытаний, экспер­тиз и сопоставление получен­ных результатов оценивания с требованиями к проекту, установлен­ными на этапе предпроектных исследований.

3.3.1. Предпроектные исследования

При проведении предпроектных исследований и формулировании требований к преобразо­вательной системе учитываются все ее внешние и внутренние связи с други­ми преобразователь­ными системами. Эти связи, иллюстрирующие, по существу, взаи­мозависимость всех элементов среды жизнедеятельности человека и общества, могут быть представлены в виде схемы (рис. 15). Требования к преобразовательной системе должны учитывать следующие особенности.

Во-первых, будучи созданным внутри и при непосредственном воздействии пре­образова­тельной системы (ПCi) получаемый результат (Pi) выполняет свои функции (удовлетворяет неко­торые витальные, интеллектуальные, эмоционально-психические или технологические потребно­сти) внутри других преобразовательных систем (ПС j+1). Из объекта преобразования он превраща­ется в средство, которое в соответствующей системе выполняет определенное действие или сово­купность действий над другим объектом преобразования, обеспечивая тем самым получение дру­гого результата. В свою очередь, в рассматриваемой преобразовательной системе (ПСi) применя­ется множество результатов (предыдущих) преобразовательных систем в виде исходных ре­сурсов, средств осуществления преобразования (инструменты, машины, оборудование, средства связи, здания, дороги, транспорт и т.п.), а также в виде составных частей, входящих в собственный ре­зультат - комплектующие изделия, энергия (например, в батарейках) и информация (в виде инст­рукций, рецептов, расписаний и др.). По суще­ству любая преобразовательная система осуществ­ляет свое действие, используя резуль­таты действия предыдущих преобразовательных систем. Ее собственные результаты используются, в свою очередь, в последующих системах.

Pк Hi-1 ПCi-1 Pк Hi ПCi-1 Pк Hi+1 ПСi+1

Рис. 15. Взаимосвязь преобразовательных систем и их надсистем: ИР, ПП, Р, Н, ПС -ис­ходные ресурсы, преобразовательный процесс, результаты преобразования, надсистема, преоб­разовательная система, соответственно; i, i-1, i+1 -рассматриваемая, предыдущая и последую­щая преобразовательные системы, соответственно; Рк -ре­зультаты действия других преобра­зовательных систем

В определенном смысле можно рассматривать любую преобразовательную сис­тему как со­вокупный результат действия других преобразовательных систем и, более того, как результат дей­ствия техносферы в целом и ноосферы, породившей техносферу.

Во-вторых, преобразовательная система выполняет свое действие в некоторой вполне определенной среде - в надсистеме (Hi). Элементы надсистемы, одним из кото­рых является и рассматриваемая преобразовательная система, не оказывают непосред­ственного воз­действия на объект, средства и способы преобразования. Они создают своеобразную природную социальную и материальную обстановку, в которой сущест­вует и осуществляет свое действие преобразовательная система. Общими элементами для всех преобразовательных систем являются, например, атмосфера и климатические особенности местности, земля и сила ее притяжения (гра­витации), флора и фауна в зо­не размещения преобразовательной системы, население с его образом жизни, уровнем культуры, социальными отношениями, а также другие преобразовательные сис­темы.

В-третьих, преобразовательная система выполняет свое функциональное назна­чение при непосредственном участии и под управлением людей (ее персонала). Дейст­вие преобразователь­ной системы зависит от квалификации и уровня образования ра­бочих, служащих, технических ра­ботников, управленческого состава и др. В то же время преобразовательная система влияет на раз­витие персонала, физическое, интел­лектуальное или эмоционально-психические состояние людей, участвующих в преоб­разовании.

Таким образом, совокупность требований к преобразовательной системе склады­вается из нескольких групп (блоков) требований, учитывающих внешние и внутренние взаимодействия сис­темы

Tnci= &(Трi Тпсi-1, Тнi , Тп), где

Tпсi - совокупность требований к преобразовательной системе;

Трi - требования, связанные с результатом преобразования;

Тпсi-1- требования, связанные с результатами предыдущих преобразовательных систем;

Тн i- требования, связанные с надсистемой;

Тп - требования, связанные с персоналом преобразовательной системы.

Результат действия преобразовательной системы с одной стороны отражает за­просы потре­бителей этого результата, поскольку он является средством или объектом действия в последую­щей преобразовательной системе. А с другой - практически пол­ностью определяет состав и струк­туру преобразовательной системы поскольку он яв­ляется объектом ее преобразования. Поэтому требования Трi можно отнести одновре­менно к требованиям последующей преобразовательной системы к проектируемой, т.е.

Формирование образа результата в виде его проекта осуществляется в целом по тем же правилам и в той же последовательности, что и проектирование преобразова­тельной системы: изучается конъюнктура рынка (спрос - предложение), выполняется прогноз развития потребно­стей, выявляются недостатки аналогов, осуществляется по­иск новых решений и.т.д. При проекти­ровании преобразовательной системы результат ее действия принимается в качестве отправной точки в виде его проекта.

Параметры результата действия преобразовательной системы (ее продукта) де­лятся на три категории - функциональные, технологические и эксплутационные. Кроме того, существенное значение имеет необходимое количество продукта. К функцио­нальным параметрам относятся свойства продукта, связанные с выполнением им своей функции. Для автомобиля это грузоподъ­емность и скорость, для жилого помещения - теплопроводность стен и внутренний воздухообмен, для пищевых продуктов - кало­рийность, количество жиров, витаминов и минеральных веществ, для различных тка­ней - их воздухо- и влагопроницаемость, прочность, огнестойкость, теплопро­водность и др. Технологические параметры определяют технологичность продукта, т.е. возмож­ность продукта быть созданным (изготовленным) с наименьшими затратами при дос­тижении тре­буемого качества и в нужном количестве. Технологические параметры продукта являются основ­ными при проектировании преобразовательной системы. К ним относятся материалоемкость, тру­доемкость, энергоемкость, степень стандартиза­ции и унификации и др. К эксплуатационным па­раметрам относятся свойства продук­та, обеспечивающие выполнение своих функций в течение требуемого (заданного) пе­риода времени с наименьшими затратами в системе "человек (общество) - среда - про­дукт". Эксплуатационными показателями продукта являются надежность, долговеч­ность, ремонтопригодность, эстетичность, экологичность, травмобезопасность, эргономичность и др. Эти параметры продукта (и одновременно объекта преобразования) проектируемой преобразо­вательной системы (равно как и средства потребляющей преобразовательной системы) также ока­зывают прямое существенное влияние на ее состав и структуру.

Требования к преобразовательной системе, отражающие результат преобразова­ния (Трi), связаны с обеспечением точности исполнения указанных в проекте результа­тов параметров - точ­ность размеров и форм, физико-химических свойств материалов и покрытий, напряжения и час­тоты тока, температуры теплоносителя, теплотворной способности (калорийности) топлива, формы представления информации, ее состава, структуры и т.п.

Преобразовательные системы, результатом действия которых являются, соответ­ственно, подъемный кран, швейная игла, радиоприемник, электроэнергия, анализ ин­формации и тот же проект существенно отличаются друг от друга и составом средств преобразования, и его структу­рой, и персоналом - его специализацией и квалификаци­ей. Отличаются друг от друга и преобразо­вательные системы, выпускающие однотип­ную продукцию в разных странах. Так создание токар­ного станка особо высокой точ­ности значительно отличается от преобразовательной системы по созданию станка нормальной точности, а получение швейного изделия на фабрике России - от анало­гичного на фабрике Финляндии.

Такое отличие зависит не только от результата преобразования (его качества, стоимости, конкурентоспособности), но и от среды, в которой осуществляется преоб­разование - от надсис­темы (Нi) и отражает в конечном счете стремление общества, со­циальных групп и отдельных лю­дей к комфортной, безопасной, духовно и интеллекту­ально насыщенной жизни. И чем выше уро­вень культуры в обществе, тем выше требо­вания надсистемы. В последнее время все более акту­альным становится, например, требование общества к экологической безопасности преобразова­тельных систем. За­грязнение атмосферы, поверхности земли, рек и водоемов, радиоактивное, электро­магнитное, тепловое воздействие преобразовательных систем существенно изменили есте­ственную природу и среду жизнедеятельности человека в худшую сторону.

Преобразовательная система проектируется для реальных условий, отражающих уровень развития техносистем, достигнутый в обществе к началу проектирования. По­этому в проекте сис­темы могут применяться такие решения, которые либо существуют в техносфере, либо их осуще­ствление не связано с непреодолимыми научно-техническими и социальными препятствиями. В проекте системы преобразования мо­гут быть применены только такие исходные ресурсы, средства и способы, которые су­ществуют или могут существовать реально. Применение непроверенных решений, фантастических идей, недоступных средств и ресурсов делает невозможной практиче­скую реализацию всего проекта. Иными словами, совокупность результатов действия предыдущих преобразовательных систем (материальных, энергетических, информаци­онных) ограничивает воз­можности будущей преобразовательной системы. Это отра­жается на проектируемой системе через требования Тпс i-1, устанавливающие пределы возможностей создающейся системы, действие ко­торой будет осуществляться в реаль­ной среде. Так, для системы изготовления одежды могут при­меняться такие машины и устройства, которые выпускаются промышленностью или которые прошли испытания и подготовлены к выпуску в соответствующих преобразовательных системах. Для по­лучения и трансформации электроэнергии не могут быть применены установки термо­ядер­ного синтеза (например, типа ТОКАМАК), т.к. они еще не дают требуемого ре­зультата. В систе­мах преобразования информации нельзя применять несуществующие компьютерные программы или программы, являющиеся недоступными (например, секретными) и т.п.

К числу ограничивающих условий (требования Тпс i-1) могут быть отнесены так­же квали­фикация и количество людских ресурсов местности, в которой предполагается реализация проекта преобразовательной системы. Людские ресурсы (персонал) можно рассматривать как результат действия специфической преобразовательной системы - системы образования, которая осуществ­ляет профессиональную подготовку общества, преобразует людей из неграмотных в грамотных, из "неумеющих" в "умеющих". Сис­тема образования "делает" рабочих, служащих, врачей, инжене­ров... Отсутствие рабо­чих, служащих, управленческих кадров требуемой квалификации и соответ­ствующего спектра профессий создает существенные, часто непреодолимые трудности в осущест­влении проекта преобразовательной системы в некоторой конкретной местности или регионе.

Персонал преобразовательной системы - это живые люди, обладающие кроме профессио­нальных знаний и умений также и физическими, интеллектуальными и ду­ховными качествами, свойствами и потребностями. Поэтому в проектируемой системе, внутри которой люди выпол­няют свои функциональные действия, должны быть обес­печены соответствующие условия.

К преобразовательной системе с позиций ее персонала предъявляются требова­ния (Тп) по сохранению здоровья, а так же эргономические, эстетические и экономи­ческие требования. Вы­полнение этих требований должно обеспечить, по крайней мере, сохранение (не ухудшение) фи­зического и эмоционально-психического состояния уча­стников преобразовательной системы, а также их материальное обеспечение.

Безопасность преобразовательной системы по отношению к ее персоналу опре­деляется не только отсутствием возможности получения "случайных" травм, отравле­ний, стрессов, но также и отсутствием процедур, приемов и операций, связанных с поднятием и перемещением тяжестей, с монотонным характером деятельности, с раз­личного рода излучениями (тепловое, электромагнит­ное, радиационное), с выделением вредных газообразных, жидких и твердых веществ и т.п.

Преобразовательная система должна быть эргономичной и эстетичной, поскольку от этого зависит не только трудоспособность персонала и производительность труда, но также психологи­ческое состояние людей, которое может переноситься ими за пре­делы преобразовательной сис­темы (например, в семью) и влиять на других людей. Кроме того, благоприятная и удобная преоб­разовательная система способствует стремлению человека к собственному интеллектуальному и духовному развитию.

Экономические требования персонала к преобразовательной системе определя­ются уров­нем (размером) вознаграждения за собственную деятельность, возможно­стью его роста и стабиль­ностью преобразовательной системы в течение достаточно длительного времени. Иными словами преобразовательная система должна быть при­быльной, стабильной, способной к быстрой адапта­ции к изменению внешних и внут­ренних условий за счет непрерывного совершенствования средств и способов преобра­зования, повышения квалификации персонала и качества материаль­ных, энергетиче­ских и информационных ресурсов через повышение требований к ним, а также за счет непрерывного улучшения результатов действия системы (качества) и уменьшения за­трат (се­бестоимости).

Таким образом, предпроектные исследования являются чрезвычайно ответствен­ным и сложным этапом проектирования преобразовательной системы, от которого за­висит ее качество и конкурентоспособность. Все результаты предпроектных исследо­ваний представляются в виде ка­кого-либо документа. В зависимости от вида преобра­зования таким документом может быть мно­готомный труд или небольшое по объему сочинение. В любом случае обобщенные результаты предпроектных исследований представляют собой задание на выполнение проекта преобразова­тельной системы.