Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика / Физика Нуруллаев часть3.doc
Скачиваний:
198
Добавлен:
27.04.2015
Размер:
1.68 Mб
Скачать

6.5. Элементарные частицы

В начале 30-х годов ХХ столетия физика нашла приемлемое описание строения вещества на основе четырех типов элементарных частиц – протонов, нейтронов, электронов и фотонов. Добавление пятой частицы – нейтрино – позволило объяснить также процессы радиоактивного распада. Казалось, что названные элементарные частицы являются первокирпичиками мироздания.

Но эта кажущаяся простота вскоре исчезла. Вскоре был обнаружен позитрон. В 1936 г. среди продуктов взаимодействия космических лучей с веществом был открыт первый мезон. После этого удалось наблюдать мезоны иной природы, а также другие необычные частицы. Эти частицы рождались под действием космических лучей довольно редко. Однако после того, как были построены ускорители, позволяющие получать частицы больших энергий, удалось открыть более 300 новых частиц.

Что же тогда понимать под словом "элементарная"? "Элементарная"  логический антипод "сложной". Элементарные частицы  значит первичные, далее неразложимые частицы, из которых состоит вся материя. К сороковым годам был известен уже ряд превращений "элементарных" частиц. Число частиц продолжает расти. Большая их часть нестабильна. Среди десятков известных микрочастиц всего несколько устойчивых, неспособных к самопроизвольным превращениям. Не является ли устойчивость по отношению к самопроизвольным превращениям признаком элементарности?

Ядро дейтерия (дейтрон) состоит из протона и нейтрона. Как частица, дейтрон совершенно устойчив. В то же время составная часть дейтрона, нейтрон, радиоактивен, т.е. неустойчив. Этот пример показывает, что понятия устойчивости и элементарности  не тождественны. В современной физике термин «Элементарные частицы» обычно употребляется для наименования большой группы мельчайших частиц материи (которые не являются атомами, или атомными ядрами).

Все элементарные частицы обладают исключительно малыми массами и размерами. У большинства из них масса порядка массы протона  (заметно меньше лишь масса электрона). Микроскопические размеры и массы элементарных частиц обусловливают квантовые закономерности их поведения. Наиболее важное квантовое свойство всех элементарных частиц – способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с другими частицами.

Известны четыре типа различных по своей природе взаимодействий между частицами: гравитационное, электромагнитное, ядерное, а также взаимодействие во всех процессах с участием нейтрино. Каковы особенности четырех перечисленных видов взаимодействия?

Наиболее сильным является взаимодействие между ядерными частицами ("ядерные силы"). Это взаимодействие принято называть сильным. Уже отмечалось, что ядерные силы действуют лишь при весьма малых расстояниях между частицами: радиус действия порядка 10-13 см.

Следующим по величине является электромагнитное взаимодействие. Оно меньше сильного на два порядка. Но с расстоянием оно меняется медленнее, как 1/r2, так что радиус действия электромагнитных сил бесконечен.

Далее следует взаимодействие, обусловленное участием в реакциях нейтрино. По порядку величины эти взаимодействия меньше сильных взаимодействий в 1014 раз. Эти взаимодействия принято называть слабыми. По-видимому, радиус действия здесь такой же, как и в случае сильного взаимодействия.

Самое малое из известных взаимодействии – гравитационное. Оно меньше сильного на 39 порядков  в 1039 раз! С расстоянием гравитационные силы убывают столь же медленно, как и электромагнитные, так что их радиус действия также бесконечен.

В космосе основная роль принадлежит гравитационным взаимодействиям, т.к. радиус действия сильных и слабых взаимодействий ничтожен. Электромагнитные взаимодействия играют ограниченную роль потому, что электрические заряды противоположных знаков стремятся к образованию нейтральных систем. Гравитационные силы  всегда силы притяжения. Их нельзя скомпенсировать силой обратного знака, от них нельзя экранироваться. Отсюда  их доминирующая роль в космосе.

Величине сил взаимодействия соответствует и время, необходимое для осуществления реакции, обусловленной этим взаимодействием. Так процессы, обусловленные сильным взаимодействием, требуют времени порядка 10-23 сек. (успевает произойти реакция при столкновении частиц больших энергий). Время, необходимое для осуществления процесса, обусловленного электромагнитным взаимодействием, требует ~10-21 сек., слабым взаимодействием ~10-9 сек. В реакциях, обусловленных взаимодействиями частиц, гравитационные силы практически никакой роли не играют.

Перечисленные взаимодействия имеют, по-видимому, разную природу, т. е. не сводятся одно к другому. В настоящее время нет возможности судить, исчерпывают ли указанные взаимодействия все имеющиеся в природе.

Класс элементарных частиц, участвующих в сильном взаимодействии, называется адронами (протон, нейтрон и др.). Класс частиц, не обладающих сильным взаимодействием, называется лептонами. К лептонам относятся электрон, мюон, нейтрино, тяжелый лептон и соответствующие им античастицы. Античастицы, совокупность элементарных частиц, имеющих те же значения масс и прочих физических характеристик, что и их «двойники», но отличающиеся от них знаком некоторых характеристик взаимодействий (например, электрического заряда, магнитного момента): электрон и позитрон, нейтрино и антинейтрино. По современным представлениям нейтрино и антинейтрино отличаются друг от друга одной из квантовых характеристик – спиральностью, определяемой как проекция спина частицы на направления ее движения (импульс). У нейтрино спин S ориентирован антипараллельно импульсу Р, т.е. направления Р и S образуют левый винт и нейтрино обладает левой спиральностью (рис. 6.2). У антинейтрино эти направления образуют правый винт, т.е. антинейтрино обладает правой спиральностью.

При столкновении частицы и античастицы они могут взаимно уничтожиться  "аннигилировать". На рис. 6.3 изображен процесс аннигиляции электрона и позитрона с возникновением двух гамма-квантов. При этом соблюдаются все известные законы сохранения  энергии, импульса, момента импульса, закон сохранения зарядов. Для рождения пары электрон  позитрон необходимо израсходовать энергию, не меньшую суммы собственных энергий этих частиц, т.е. ~ 106 эВ. При аннигиляции такой пары эта энергия отдается либо с порождаемым при аннигиляции излучением, либо распределяется среди других частиц.

Из закона сохранения заряда следует, что заряженная частица не может возникнуть без того, чтобы не возникла другая с зарядами обратных знаков (чтобы суммарный заряд всей системы частиц не менялся). Примером такой реакции является реакция превращения нейтрона в протон с одновременным образованием электрона и вылетом нейтрино

. (6.9)

Электрический заряд при этом превращении сохраняется. Точно так же сохраняется он при превращении фотона в пару электронпозитрон или при рождении такой же пары в результате столкновения двух электронов.

Существует гипотеза, что все элементарные частицы являются комбинациями трех основных частиц, называемых кварками, и их античастиц. В свободном состоянии кварки не были обнаружены (несмотря на многочисленные их поиски на ускорителях высоких энергий, в космических лучах и окружающей среде).

Невозможно описать свойства и превращения микрочастиц без какой-либо их систематизации. Систематизации, построенной на основе строгой теории, нет.

Две основные группы элементарных частиц составляют сильно взаимодействующие (адроны) и слабо взаимодействующие (лептоны) частицы. Адроны делятся на мезоны и барионы. Барионы подразделяются на нуклоны и гипероны. К лептонам относятся электроны, мюоны и нейтрино. Ниже приведены величины, с помощью которых систематизируют микрочастицы.

1. Массовое или барионное число А. Многочисленные факты, наблюдаемые в процессе деления ядер, рождения пары нуклон и антинуклон, позволяют утверждать, что в любом процессе число нуклонов остается постоянным. Всем барионам приписывают число А = +1, каждой античастице А = –1. Закон сохранения барионного заряда выполняется точно во всех ядерных процессах. Кратными значениями барионного числа обладают сложные частицы. У всех мезонов и лептонов барионное число равно нулю.

2. Электрический заряд q представляет собой число единиц электрического заряда (в единицах положительного заряда протона), присущего частице.

3. Изотопический спин (не имеет отношения к реальному спину). Силы, действующие между нуклонами в ядре, почти не зависят от типа нуклонов, т.е. ядерные взаимодействия рр, рn и nn одинаковы. Эта симметрия ядерных сил приводит к сохранению величины, называемой изотопическим спином. Изоспин сохраняется в сильных взаимодействиях и не сохраняется в процессах, вызванных электромагнитным и слабым взаимодействием.

4. Странность. Чтобы объяснить, почему не происходят некоторые процессы с участием адронов М. Гелл-Манн и К. Нишиджима в 1953 г. предложили ввести новое квантовое число, которое они назвали странностью. Странность стабильных адронов лежит в пределах от –3 до +3 (целые числа). Странность лептонов не определена. В сильных взаимодействиях странность сохраняется.

5. Спин. Характеризует спиновый момент импульса.

6. Четность. Внутреннее свойство частицы, связанное с ее симметрией по отношению к правому и левому. До недавнего времени физики полагали, что различия между правым и левым нет. Впоследствии оказалось, что они неравноценны для всех процессов слабого взаимодействия – что было одним из наиболее удивительных открытий в физике.

В классической физике вещество и физическое поле противопоставлялись друг другу как два вида материи. Вещество слагается из элементарных частиц, это вид материи, обладающей массой покоя. У вещества структура дискретна, у поля непрерывна. Но квантовая физика привела к нивелированию этого представления. В классической физике полагается, что на частицы действуют силовые поля – гравитационное и электромагнитное. Других полей классическая физика не знала. В квантовой физике за полями видят истинных переносчиков взаимодействия – кванты этих полей, т.е. частицы. Для классических полей это гравитоны и фотоны. Когда поля достаточно сильны и квантов много, мы перестаем различать их как отдельные частицы, и воспринимаем как поле. Носителями сильных взаимодействий являются глюоны. С другой стороны, любая микрочастица (элемент вещества) обладает двойственной корпускулярно-волновой природой.