
- •1. Определение вектора. Длина вектора. Коллинеарность, компланарность векторов.
- •2. Умножение вектора на число. Свойства операции.
- •3. Сложение векторов, вычитание векторов.
- •4. Базис на плоскости. Теорема о разложении любого вектора по трём базисным векторам.
- •5. Базис в пространстве. Теорема о разложении любого вектора по трем базисным векторам.
- •6. Линейная зависимость векторов.
- •7. Декартова система координат на плоскости и в пространстве, координаты вектора.
- •8. Геометрический смысл координат вектора. Проекция вектора на координатные оси. Направляющие косинусы вектора
- •9. Деление отрезка в данном отношении.
- •6.4. Некоторые приложения скалярного произведения
- •11. Выражение скалярного произведения вектора через координаты сомножителей. Теорема.
- •12. Длина вектора, длина отрезка, угол между векторами, условие перпендикулярности векторов.
- •13. Векторное произведение векторов, его свойства. Площадь параллелограмма.
- •14. Смешанное произведение векторов, его свойства. Условие компланарности вектора. Объем параллелепипеда. Объём пирамиды.
- •15. Способы задания прямой на плоскости.
- •16. Нормальное уравнение прямой на плоскости (вывод). Геометрический смысл коэффициентов.
- •17. Уравнение прямой на плоскости в отрезках (вывод).
- •Приведение общего уравнения плоскости к уравнению плоскости в отрезках.
- •18. Уравнение прямой на плоскости с угловым коэффициентом (вывод).
- •19. Уравнение прямой на плоскости, проходящей через две точки (вывод).
- •20. Угол между прямыми на плоскости (вывод).
- •21. Расстояние от точки до прямой на плоскости (вывод).
- •22. Условия параллельности и перпендикулярности прямых на плоскости (вывод).
- •23. Уравнение плоскости. Нормальное уравнение плоскости (вывод). Геометрический смысл коэффициентов.
- •24. Уравнение плоскости в отрезках (вывод).
- •25. Уравнение плоскости, проходящей через три точки (вывод).
- •26. Угол между плоскостями (вывод).
- •27. Расстояние от точки до плоскости (вывод).
- •28. Условия параллельности и перпендикулярности плоскостей (вывод).
- •29. Уравнения прямой в r3. Уравнения прямой, проходящей через две фиксированные точки (вывод).
- •30. Канонические уравнения прямой в пространстве (вывод).
- •Составление канонических уравнений прямой в пространстве.
- •Частные случаи канонических уравнений прямой в пространстве.
- •Канонические уравнения прямой проходящей через две заданные точки пространства.
- •Переход от канонических уравнений прямой в пространстве к другим видам уравнений прямой.
- •31. Угол между прямыми (вывод).
- •32. Расстояние от точки до прямой на плоскости (вывод).
- •Расстояние от точки до прямой на плоскости – теория, примеры, решения.
- •Первый способ нахождения расстояния от заданной точки до заданной прямой на плоскости.
- •Второй способ, позволяющий найти расстояние от заданной точки до заданной прямой на плоскости.
- •Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости.
- •Расстояние от точки до прямой в пространстве – теория, примеры, решения.
- •Первый способ нахождения расстояния от точки до прямойaв пространстве.
- •Второй способ, позволяющий находить расстояние от точки до прямойaв пространстве.
- •33. Условия параллельности и перпендикулярности прямых в пространстве.
- •34. Взаимное расположение прямых в пространстве и прямой с плоскостью.
- •35. Классическое уравнение эллипса (вывод) и его построение. Каноническое уравнение эллипса имеет вид , где– положительные действительные числа, причём.Как построить эллипс?
- •36. Классическое уравнение гиперболы (вывод) и его построение. Асимптоты.
- •37. Каноническое уравнение параболы (вывод) и построение.
- •38. Функция. Основные определения. Графики основных элементарных функций.
- •39. Числовые последовательности. Предел числовой последовательности.
- •40. Бесконечно малые и бесконечно большие величины. Теорема о связи между ними, свойства.
- •41. Теоремы о действиях над переменными величинами, имеющими конечные пределы.
- •42. Число e.
- •Содержание
- •Способы определения
- •Свойства
- •История
- •Приближения
- •43. Определение предела функции. Раскрытие неопределённостей.
- •44. Замечательные пределы, их вывод. Эквивалентные бесконечно малые величины.
- •Содержание
- •Первый замечательный предел
- •Второй замечательный предел
- •45. Односторонние пределы. Непрерывность и разрывы функции. Односторонние пределы
- •Левый и правый пределы функции
- •Точка разрыва первого рода
- •Точка разрыва второго рода
- •Точка устранимого разрыва
- •46. Определение производной. Геометрический смысл, механический смысл производной. Уравнения касательной и нормали к кривой и точке.
- •47. Теоремы о производной обратной, сложной функций.
- •48. Производные простейших элементарных функций.
- •49. Дифференцирование параметрических, неявных и степенно-показательных функций.
- •21. Дифференцирование неявных и параметрически заданных функций
- •21.1. Неявно заданная функция
- •21.2. Функция, заданная параметрически
- •50. Производные высших порядков. Формула Тейлора.
- •51. Дифференциал. Применение дифференциала к приближенным вычислениям.
- •52. Теоремы Ролля, Лагранжа, Коши. Правило Лопиталя.
- •53. Теорема о необходимом и достаточном условиях монотонности функции.
- •54. Определение максимума, минимума функции. Теоремы о необходимом и достаточном условиях существования экстремума функции.
- •Теорема (необходимое условие экстремума)
- •55. Выпуклость и вогнутость кривых. Точки перегиба. Теоремы о необходимом и достаточном условиях существования точек перегиба.
- •Доказательство
- •57. Определители n-ого порядка, их свойства.
- •58. Матрицы и действия над ними. Ранг матрицы.
- •Определение
- •Связанные определения
- •Свойства
- •Линейное преобразование и ранг матрицы
- •59. Обратная матрица. Теорема о существовании обратной матрицы.
- •60. Системы линейных уравнений. Матричное решение систем линейных уравнений. Правило Крамера. Метод Гаусса. Теорема Кронекера-Капелли.
- •Решение систем линейных алгебраических уравнений, методы решения, примеры.
- •Определения, понятия, обозначения.
- •Решение элементарных систем линейных алгебраических уравнений.
- •Решение систем линейных уравнений методом Крамера.
- •Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).
- •Решение систем линейных уравнений методом Гаусса.
- •Решение систем линейных алгебраических уравнений общего вида.
- •Теорема Кронекера – Капелли.
- •Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.
- •Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.
- •Решение систем уравнений, сводящихся к слау.
- •Примеры задач, сводящихся к решению систем линейных алгебраических уравнений.
Расстояние от точки до прямой в пространстве – теория, примеры, решения.
Пусть
в трехмерном пространстве зафиксирована
прямоугольная система координат Oxyz,
задана точка,
прямаяaи требуется найти расстояние
от точкиАдо прямойa.
Покажем два способа, позволяющих вычислять расстояние от точки до прямой в пространстве. В первом случае нахождение расстояния от точки М1до прямойaсводится к нахождению расстояния от точкиМ1до точкиH1, гдеH1- основание перпендикуляра, опущенного из точкиМ1на прямуюa. Во втором случае расстояние от точки до плоскости будем находить как высоту параллелограмма.
Итак, приступим.
Первый способ нахождения расстояния от точки до прямойaв пространстве.
Так
как по определению расстояние от точки
М1до прямойa– это
длина перпендикуляраM1H1,
то, определив координатыточкиH1, мы сможем вычислить
искомое расстояние как расстояние между
точками
и
по
формуле
.
Таким образом, задача сводится к нахождению координат основания перпендикуляра, построенного из точки М1к прямойa. Сделать это достаточно просто: точкаH1– это точка пересечения прямойaс плоскостью, проходящей через точкуМ1перпендикулярно к прямойa.
Следовательно,
алгоритм, позволяющий определять
расстояние от точки
до
прямойa в пространстве,
таков:
составляем уравнение плоскости
какуравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямойa;
определяем координаты
точкиH1– точки пересечения прямойaи плоскости
(смотрите статьюнахождение координат точки пересечения прямой и плоскоти);
вычисляем требуемое расстояние от точки М1до прямойaпо формуле
.
Второй способ, позволяющий находить расстояние от точки до прямойaв пространстве.
Так
как в условии задачи нам задана прямая
a, то мы можем определить ее направляющий
вектори
координаты
некоторой
точкиМ3, лежащей на прямойa. Тогда по координатам точек
и
мы
можем вычислить координаты вектора
:
(при
необходимости обращайтесь к статьекоординаты
вектора через координаты точек его
начала и конца).
Отложим
векторы
и
от
точкиМ3и построим на них
параллелограмм. В этом параллелограмме
проведем высотуМ1H1.
Очевидно,
высота М1H1построенного параллелограмма равна
искомому расстоянию от точкиМ1до прямойa. Найдем.
С
одной стороны площадь параллелограмма
(обозначим ее S) может быть найдена
черезвекторное
произведение векторови
по
формуле
.
С другой стороны площадь параллелограмма
равна произведению длины его стороны
на высоту, то есть,
,
где
-длина
вектора
,
равная длине стороны рассматриваемого
параллелограмма. Следовательно,
расстояние
от
заданной точкиМ1до
заданной прямойaможет быть найдена
из равенства
как
.
Итак,
чтобы найти расстояние от точки
до
прямойa в пространстве нужно
определить направляющий вектор прямой a(
) и вычислить его длину
;
получить координаты
некоторой точкиМ3, лежащей на прямойa, вычислить координаты вектора
, найти векторное произведение векторов
и
как
и получить его длину
;
вычислить требуемое расстояние от точки до прямой в пространстве по формуле
.
33. Условия параллельности и перпендикулярности прямых в пространстве.
Чтобы две прямые были параллельны необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, т. е. их соответствующие координаты были пропорциональны.
Чтобы две прямые были перпендикулярны необходимо и достаточно, чтобы направляющие векторы этих прямых были перпендикулярны, т. е. косинус угла между ними равен нулю.