
- •1. Определение вектора. Длина вектора. Коллинеарность, компланарность векторов.
- •2. Умножение вектора на число. Свойства операции.
- •3. Сложение векторов, вычитание векторов.
- •4. Базис на плоскости. Теорема о разложении любого вектора по трём базисным векторам.
- •5. Базис в пространстве. Теорема о разложении любого вектора по трем базисным векторам.
- •6. Линейная зависимость векторов.
- •7. Декартова система координат на плоскости и в пространстве, координаты вектора.
- •8. Геометрический смысл координат вектора. Проекция вектора на координатные оси. Направляющие косинусы вектора
- •9. Деление отрезка в данном отношении.
- •6.4. Некоторые приложения скалярного произведения
- •11. Выражение скалярного произведения вектора через координаты сомножителей. Теорема.
- •12. Длина вектора, длина отрезка, угол между векторами, условие перпендикулярности векторов.
- •13. Векторное произведение векторов, его свойства. Площадь параллелограмма.
- •14. Смешанное произведение векторов, его свойства. Условие компланарности вектора. Объем параллелепипеда. Объём пирамиды.
- •15. Способы задания прямой на плоскости.
- •16. Нормальное уравнение прямой на плоскости (вывод). Геометрический смысл коэффициентов.
- •17. Уравнение прямой на плоскости в отрезках (вывод).
- •Приведение общего уравнения плоскости к уравнению плоскости в отрезках.
- •18. Уравнение прямой на плоскости с угловым коэффициентом (вывод).
- •19. Уравнение прямой на плоскости, проходящей через две точки (вывод).
- •20. Угол между прямыми на плоскости (вывод).
- •21. Расстояние от точки до прямой на плоскости (вывод).
- •22. Условия параллельности и перпендикулярности прямых на плоскости (вывод).
- •23. Уравнение плоскости. Нормальное уравнение плоскости (вывод). Геометрический смысл коэффициентов.
- •24. Уравнение плоскости в отрезках (вывод).
- •25. Уравнение плоскости, проходящей через три точки (вывод).
- •26. Угол между плоскостями (вывод).
- •27. Расстояние от точки до плоскости (вывод).
- •28. Условия параллельности и перпендикулярности плоскостей (вывод).
- •29. Уравнения прямой в r3. Уравнения прямой, проходящей через две фиксированные точки (вывод).
- •30. Канонические уравнения прямой в пространстве (вывод).
- •Составление канонических уравнений прямой в пространстве.
- •Частные случаи канонических уравнений прямой в пространстве.
- •Канонические уравнения прямой проходящей через две заданные точки пространства.
- •Переход от канонических уравнений прямой в пространстве к другим видам уравнений прямой.
- •31. Угол между прямыми (вывод).
- •32. Расстояние от точки до прямой на плоскости (вывод).
- •Расстояние от точки до прямой на плоскости – теория, примеры, решения.
- •Первый способ нахождения расстояния от заданной точки до заданной прямой на плоскости.
- •Второй способ, позволяющий найти расстояние от заданной точки до заданной прямой на плоскости.
- •Решение задач на нахождение расстояния от заданной точки до заданной прямой на плоскости.
- •Расстояние от точки до прямой в пространстве – теория, примеры, решения.
- •Первый способ нахождения расстояния от точки до прямойaв пространстве.
- •Второй способ, позволяющий находить расстояние от точки до прямойaв пространстве.
- •33. Условия параллельности и перпендикулярности прямых в пространстве.
- •34. Взаимное расположение прямых в пространстве и прямой с плоскостью.
- •35. Классическое уравнение эллипса (вывод) и его построение. Каноническое уравнение эллипса имеет вид , где– положительные действительные числа, причём.Как построить эллипс?
- •36. Классическое уравнение гиперболы (вывод) и его построение. Асимптоты.
- •37. Каноническое уравнение параболы (вывод) и построение.
- •38. Функция. Основные определения. Графики основных элементарных функций.
- •39. Числовые последовательности. Предел числовой последовательности.
- •40. Бесконечно малые и бесконечно большие величины. Теорема о связи между ними, свойства.
- •41. Теоремы о действиях над переменными величинами, имеющими конечные пределы.
- •42. Число e.
- •Содержание
- •Способы определения
- •Свойства
- •История
- •Приближения
- •43. Определение предела функции. Раскрытие неопределённостей.
- •44. Замечательные пределы, их вывод. Эквивалентные бесконечно малые величины.
- •Содержание
- •Первый замечательный предел
- •Второй замечательный предел
- •45. Односторонние пределы. Непрерывность и разрывы функции. Односторонние пределы
- •Левый и правый пределы функции
- •Точка разрыва первого рода
- •Точка разрыва второго рода
- •Точка устранимого разрыва
- •46. Определение производной. Геометрический смысл, механический смысл производной. Уравнения касательной и нормали к кривой и точке.
- •47. Теоремы о производной обратной, сложной функций.
- •48. Производные простейших элементарных функций.
- •49. Дифференцирование параметрических, неявных и степенно-показательных функций.
- •21. Дифференцирование неявных и параметрически заданных функций
- •21.1. Неявно заданная функция
- •21.2. Функция, заданная параметрически
- •50. Производные высших порядков. Формула Тейлора.
- •51. Дифференциал. Применение дифференциала к приближенным вычислениям.
- •52. Теоремы Ролля, Лагранжа, Коши. Правило Лопиталя.
- •53. Теорема о необходимом и достаточном условиях монотонности функции.
- •54. Определение максимума, минимума функции. Теоремы о необходимом и достаточном условиях существования экстремума функции.
- •Теорема (необходимое условие экстремума)
- •55. Выпуклость и вогнутость кривых. Точки перегиба. Теоремы о необходимом и достаточном условиях существования точек перегиба.
- •Доказательство
- •57. Определители n-ого порядка, их свойства.
- •58. Матрицы и действия над ними. Ранг матрицы.
- •Определение
- •Связанные определения
- •Свойства
- •Линейное преобразование и ранг матрицы
- •59. Обратная матрица. Теорема о существовании обратной матрицы.
- •60. Системы линейных уравнений. Матричное решение систем линейных уравнений. Правило Крамера. Метод Гаусса. Теорема Кронекера-Капелли.
- •Решение систем линейных алгебраических уравнений, методы решения, примеры.
- •Определения, понятия, обозначения.
- •Решение элементарных систем линейных алгебраических уравнений.
- •Решение систем линейных уравнений методом Крамера.
- •Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).
- •Решение систем линейных уравнений методом Гаусса.
- •Решение систем линейных алгебраических уравнений общего вида.
- •Теорема Кронекера – Капелли.
- •Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.
- •Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.
- •Решение систем уравнений, сводящихся к слау.
- •Примеры задач, сводящихся к решению систем линейных алгебраических уравнений.
32. Расстояние от точки до прямой на плоскости (вывод).
Расстояние от точки до прямой определяется через расстояние от точки до точки. Покажем как это делается.
Пусть на плоскости или в трехмерном пространстве задана прямая aи точкаM1, не лежащая на прямойa. Проведем через точкуM1прямуюb, перпендикулярную прямойa. Обозначим точку пересечения прямыхaиbкакH1. ОтрезокM1H1называетсяперпендикуляром, проведенным из точкиM1к прямойa.
Определение.
Расстоянием от точки M1 до прямой aназывают расстояние между точкамиM1иH1.
Однако чаще встречается определение расстояния от точки до прямой, в котором фигурирует длина перпендикуляра.
Определение.
Расстояние от точки до прямой– это длина перпендикуляра, проведенного из данной точки к данной прямой.
Это определение эквивалентно первому определению расстояния от точки до прямой.
Обратите внимание на то, что расстояние от точки до прямой – это наименьшее из расстояний от этой точки до точек заданной прямой. Покажем это.
Возьмем
на прямой aточкуQ, не совпадающую
с точкойM1. ОтрезокM1Qназываютнаклонной, проведенной из
точкиM1к прямойa. Нам
нужно показать, что перпендикуляр,
проведенный из точкиM1к
прямойa, меньше любой наклонной,
проведенной из точкиM1к
прямойa. Это действительно так:
треугольникM1QH1прямоугольный с гипотенузойM1Q,
а длина гипотенузы всегда больше длины
любого из катетов, следовательно,.
К началу страницы
Расстояние от точки до прямой на плоскости – теория, примеры, решения.
В зависимости от исходных данных для нахождения расстояния от точки до прямой можно использовать различные методы геометрии: теорему Пифагора, определения синуса, косинуса, тангенса угла, признаки равенства и подобия треугольников и т.п. Множество подобных задач решается на уроках геометрии в средней школе.
Если же при нахождении расстояния от точки до прямой есть возможность ввести прямоугольную систему координат, то можно воспользоваться методом координат. В этом пункте статьи мы подробно остановимся на двух способах нахождения расстояния от точкиM1до прямойa, которые заданы в прямоугольной декартовой системе координатOxyна плоскости. В первом случае расстояние от точкиM1до прямойaмы будем искать как расстояние от точкиM1до точкиH1, гдеH1– основание перпендикуляра, опущенного из точкиM1на прямуюa. Во втором способе нахождения расстояния от точкиM1до прямойaбудем использоватьнормальное уравнение прямойa.
Итак,
поставим перед собой следующую задачу:
пусть на плоскости зафиксирована
прямоугольная система координат Oxy,
задана точка,
прямаяaи требуется найти расстояние
от
точкиM1до прямойa.
Разберем по-очереди два способа ее
решения.
Первый способ нахождения расстояния от заданной точки до заданной прямой на плоскости.
Если
мы определим координаты
точкиH1, то искомое расстояние
мы
сможем вычислить, используя формулу
для нахождения расстояния от точкиM1до точкиH1по их координатам:
.
Осталось разобраться с нахождением координат точки H1.
Мы знаем, что прямой линии в прямоугольной системе координат Oxyсоответствует некотороеуравнение прямой на плоскости. Будем считать, что способ задания прямойaв условии задачи позволяет написатьобщее уравнение прямойaилиуравнение прямой с угловым коэффициентом. После этого мы можем составитьуравнение прямой, проходящей через заданную точку M1перпендикулярно заданной прямойa. Обозначим эту прямую буквойb. Тогда точкаH1– это точка пересечения прямыхaиb, следовательно, координаты точкиH1можно определить, обратившись к материалу статьикоординаты точки пересечения двух прямых.
Итак,
мы получили алгоритм для нахождения
расстояния от заданной точки
до
заданной прямойa:
находим общее уравнение прямой aвида
или уравнение прямойaс угловым коэффициентом
;
получаем общее уравнение прямой bвида
или уравнение прямойbс угловым коэффициентом вида
, учитывая, что прямаяbпроходит через заданную точкуM1и перпендикулярна заданной прямойa;
определяем координаты
точкиH1- точки пересечения прямыхaиb, решая систему линейных уравнений
или
;
вычисляем требуемое расстояние от точки M1до прямойaпо формуле
.