
- •В.М. Полунин, г.Т.Сычев
- •Физические основы механики
- •Конспект лекций
- •Содержание
- •От авторов
- •Лекция 1. Вводная
- •Лекция 2. Элементы кинематики
- •2.1. Механика и ее разделы. Физические модели: материальная точка (частица), абсолютно твердое тело (система материальных точек), сплошная среда
- •2.2. Пространственно-временные отношения. Развитие представлений о свойствах пространства и времени в механике
- •2.3. Системы отсчета и описание движений. Элементы кинематики материальной точки: перемещение, скорость и ускорение
- •2.4. Элементы кинематики материальной точки и тела, совершающих вращательное движение: угол поворота, угловые скорость и ускорение. Их связь с линейной скоростью и линейным ускорением
- •2.5. Гармонические колебательные движения и их характеристики: смещение, амплитуда, период, частота, фаза, скорость и ускорение
- •2.6. Методы сложения гармонических колебаний. Векторные диаграммы. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •2.7. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу
- •Лекция 3.Элементы динамики материальной точки и твердого тела
- •3.2. Инерциальные и неинерциальные системы отсчета
- •3.3. Описание движения в неинерциальных системах отсчета
- •3.3.1. Силы инерции при ускоренном движении системы отсчета
- •3.3.2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета
- •3.3.3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета (сила Кориолиса)
- •Силы инерции, возникающие в неинерциальной системе отсчета в зависимости от состояния частицы
- •3.5. Основной закон динамики вращательного движения
- •3.6. Сопоставление формул динамики вращательного и динамики поступательного движений
- •Сопоставление формул динамики поступательного движения и динамики вращательного движения
- •Лекция 4. Физика колебаний. Гармонический осциллятор. Нормальные моды
- •4.1. Дифференциальное уравнение гармонических колебаний и его решение
- •4.2. Примеры гармонических осцилляторов. Физический, математический и пружинный маятники. Определение их периодов и частот
- •4.2.1. Пружинный маятник
- •4.2.2. Физический и математический маятники
- •4.3. Свободные (затухающие колебания). Дифференциальное уравнение затухающих колебаний и его решение. Характеристики затухающих колебаний
- •4.4. Вынужденные колебания гармонического осциллятора под действием синусоидальной силы. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний
- •Лекция 5.Ангармонические колебания
- •5.1. Нелинейный осциллятор. Физические системы, содержащие нелинейность
- •5.2. Автоколебания. Обратная связь. Условие самовозбуждения. Роль нелинейности. Предельные циклы
- •Лекция 6. Физика волн. Волновые процессы
- •6.1. Кинематика и динамика волновых процессов. Плоская стационарная и синусоидальная волна
- •6.2. Уравнение плоской волны
- •6.3.Волновое уравнение
- •6.4. Интерференция волн. Стоячие волны
- •Лекция 7.Энергия, работа, мощность
- •7.1. Работа силы и её выражение через криволинейный интеграл
- •Из (7.1) следует, что при
- •7.1.1. Работа, совершаемая внешними силами при вращательном движении относительно неподвижной оси
- •7.2. Мощность
- •Различают мгновенную мощность и среднюю мощность.
- •Поскольку
- •7.3. Энергия как универсальная мера различных форм движений и взаимодействий
- •7.4. Кинетическая энергия системы и её связь с работой внешних и внутренних сил, приложенных к системе
- •7.5. Энергия системы, совершающей вращательное движение
- •Подставив значение VI в (7.35) будем иметь
- •То есть работа внешних сил, действующих на вращающуюся относительно неподвижной оси материальную точку (тело, систему), равна изменению кинетической энергии:
- •7.6. Потенциальная энергия и энергия взаимодействия. Потенциальная энергия и устойчивость системы
- •7.6.1. Связь между потенциальной энергией и силой
- •7.6.2. Внутренняя энергия
- •7.6.3. Силовые поля. Поле как форма существования материи. Поле как форма существования материи осуществляющая силовое взаимодействие между материальными объектами. Характеристики силовых полей
- •Второй характеристикой силового потенциального поля является потенциал.
- •7.6.4. Потенциальная энергия материальной точки (тела, системы) во внешнем силовом поле
- •7.6.5. Поле центральных сил. Движение в поле центральных сил
- •Элементарная работа по перемещению массы на элементарном отрезке dr:
- •Из полученного соотношения видно:
- •В случае, когда сила притяжения будет равна центростремительной силе, то
- •Подставляя значения vа и vп в формулу (7.41), будем иметь
- •Подставив в формулу (7.83) значения r и V, будем иметь t 92 мин.
- •7.7. Энергия упругой деформации
- •7.8. Энергия системы, совершающей колебательное движение
- •Кинетическая энергия системы, совершающей гармоническое колебание, находится по формуле
- •Лекция 8. Законы сохранения в механике
- •8.1. Закон сохранения энергии в механике
- •8.1.1. Общефизический закон сохранения энергии
- •8.1.2. Закон сохранения и превращения механической энергии
- •8.2. Закон сохранения импульса. Центр инерции. Закон движения центра инерции
- •8.3. Закон сохранения момента импульса. Уравнение моментов
- •В векторной форме
- •8.4. Применение законов сохранения к упругому и неупругому взаимодействиям (удару)
- •8.4.1. Абсолютно неупругий удар шаров
- •Лекция 9. Основы релятивистской механики. Релятивистская кинематика
- •9.1. Принцип относительности Галилея. Преобразования Галилея. Инварианты преобразования. Закон сложения скоростей в классической механике
- •9.2. Постулаты и представления о свойствах пространства и времени в специальной теории относительности
- •9.3. Преобразования Лоренца для координат и времени
- •9.4. Следствия из преобразований Лоренца
- •9.4.1. Закон сложения скоростей в теории относительности
- •9.4.2. Сокращение движущихся масштабов длин
- •9.4.3.Замедление хода движущихся часов
- •Лекция 10.Релятивистская динамика
- •10.2. Четырехмерное пространство - время. Преобразования в четырехмерном пространстве
- •10.2.1. Основные понятия
- •10.2.2. Кинематика четырехмерного пространства-времени
- •10.2.3. Динамика четырехмерного пространства-времени
- •10.3. Столкновения релятивистских частиц. Законы сохранения энергии и импульса
- •10.4. Значение теории относительности
- •Библиографический список Основной
- •Дополнительный
- •Физика Физические основы механики Конспект лекций
5.2. Автоколебания. Обратная связь. Условие самовозбуждения. Роль нелинейности. Предельные циклы
Автоколебаниями называются вынужденные незатухающие колебания в реальных системах, период и амплитуда которых не зависят от характера внешнего воздействия, а определяются свойствами самой автоколебательной системы.
Автоколебания поддерживаются за счет энергии от внешнего источника, причем количество поступающей энергии регулируется самой системой. В отличие от незатухающих собственных колебаний гармонического осциллятора и аналогичных систем, амплитуды которых определяются начальными условиями, амплитуды которых определяются начальными условиями, амплитуды автоколебаний от начальных условий не зависят.
Собственные незатухающие колебания относятся к идеализированному типу колебаний, который в реальных системах никогда не реализуется точно. Реальные собственные колебания всегда затухают. Напротив, автоколебания в реальных системах могут продолжаться сколь угодно долго, пока не израсходуется энергия источника, поддерживающая эти колебания.
Примеров автоколебательных систем довольно много. Автоколебания могут возбуждаться и поддерживаться также периодическими силами. Однако период последних не имеет никакого отношения к периоду возбуждаемых автоколебаний.
Строгая теория автоколебаний весьма сложна. Это связано с тем, что автоколебания нелинейны, т. е. описываются нелинейными уравнениями. Принцип суперпозиции в этих случаях не выполняется, что затрудняет получение и исследование решений самих уравнений.
Лекция 6. Физика волн. Волновые процессы
Кинематика и динамика волновых процессов. Плоская стационарная и синусоидальная волна. Интерференция и дифракция волн. Бегущие и стоячие волны. Фазовая скорость, длина волны, волновое число, волновой вектор. Упругие волны в газах, жидкостях и твердых телах. Энергетические характеристики упругих волн. Вектор Умова.
6.1. Кинематика и динамика волновых процессов. Плоская стационарная и синусоидальная волна
Волны – изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Процесс распространения колебаний в пространстве.
Распространение колебаний в пространстве происходит благодаря взаимодействию между частицами упругой среды. Волна в отличие от колебаний характеризуется не только периодичностью во времени, но и периодичностью в пространстве. Частицы среды при этом не переносятся волной, они лишь совершают колебания около своих положений равновесия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества в пространстве. Среди разнообразия волн, встречающихся в природе и технике, выделяют упругие, на поверхности жидкости и электромагнитные.
Упругими (или механическими) волнами называются механические возмущения, возникающие и распространяющиеся в упругой среде. К упругим волнам относятся звуковые и сейсмические волны; к электромагнитным – радиоволны, свет и рентгеновские лучи.
В зависимости от направления колебаний частиц по отношению к направлению распространения волны различают продольные и поперечные волны.
Продольные – это волны, направление распространения которых совпадает с направлением смещения (колебания) частиц среды.
Поперечные – это волны, направление распространения которых и направление смещения (колебания) частиц среды взаимно перпендикулярны.
В жидкостях и газах упругие силы возникают только при сжатии и не возникают при сдвиге, поэтому упругие деформации в них могут распространяться только в виде продольных волн (“волны сжатия”).
В твердых телах, в которых упругие силы возникают при сдвиге, упругие деформации могут распространяться не только в виде продольных, но и в виде поперечных волн (“волны сдвига”). В твердых телах ограниченного размера (например, в стержнях и пластинах) картина распространения волны более сложна: здесь возникают еще и другие типы волн, являющиеся комбинацией первых двух основных типов.
В электромагнитных волнах направления электрического и магнитного полей почти всегда перпендикулярны направлению распространения волны, (за исключением случаев анизотропных сред и распространения в несвободном пространстве) поэтому электромагнитные волны в свободном пространстве поперечны.
Волны могут иметь различную форму. Одиночной волной, или импульсом, называется сравнительно короткое возмущение, не имеющее регулярного характера. Ограниченный ряд повторяющихся возмущений называется цугом волн.
Гармоническая волна – бесконечная синусоидальная волна, в которой все изменения среды происходят по закону синуса или косинуса. Такие возмущения могут распространяться в однородной среде (если их амплитуда невелика) без искажения формы.
Геометрическое место точек, до которых доходят волны за некоторый промежуток времени t, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченного в волновой процесс, от области, в которой колебания еще не возникли.
Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновых поверхностей существует бесконечное множество, в то время, как волновой фронт в каждый момент времени только один. Волновые поверхности остаются неподвижными (они проходят через положения равновесия частиц, колеблющихся в одинаковой фазе). Волновой фронт все время перемещается. Волновые поверхности могут иметь различную геометрию. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой систему параллельных друг другу плоскостей, а в сферической волне - систему концентрических сферических поверхностей.
Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны . Длина волны равна расстоянию, на которое распространяется волна за один период:
или
,
(6.1)
где - длина волны;
T – период волны, т.е. время, за которое совершается один полный цикл колебания;
- частота, т.е. число периодов в единицу времени.
Направление волны определяется с помощью волнового вектора k. Направление волнового вектора совпадает с направлением вектора скорости:
,
(6.2)
где - круговая или циклическая частота.
В акустике и оптике численное значение волнового вектора представляют в виде волнового числа:
.
(6.3)