- •I группа. Компоненты этой группы широко распространены и необходимые пределы обнаружения аналитических методов, используемых для их обнаружения, легко достигаются:
- •III группа:
- •Природной среды
- •2. Проблема пробоотбора.
- •3. Новые методы и методики.
- •5. Проблема метрологического обеспечения
- •1. Аналитический цикл и его этапы. Универсальная система химического анализа
- •2. Методы экоаналитического контроля
- •3. Нормирование качества природной среды
- •2.3.1. Атмосфера
- •1. Виды проб
- •2. Отбор проб воздуха
- •2.1. Контейнеры
- •2.2. Абсорбционное улавливание
- •2.3. Криогенное концентрирование (улавливание)
- •2.4. Сорбция (адсорбция)
- •Современное состояние и проблемы
- •1.2. Определение в воздухе соединений азота (nh3, no2 и другие оксиды, n2h4)
- •1.3. Определение o3
- •1.4. Определение оксидов углерода
- •1.5. Определение фтороводорода
- •1.6. Определение лос. Хромато-масс-спектромерия
- •2. Определение аэрозолей, пылей
- •2.1. Индекс черного дыма
- •2.2. Гравиметрический метод определения взвешенных частиц
- •2.3. Определение асбеста
- •3. Металлы
- •3.1. Тетраэтилсвинец и свинец в атмосферных аэрозолях
- •3.2. Другие металлы, ртуть
- •4. Автоматические приборы для контроля качества воздуха
3.1. Тетраэтилсвинец и свинец в атмосферных аэрозолях
Международные стандарты ИСО 9855 и 8518 регламентируют атомно-абсорбционный метод определения свинца в атмосферном воздухе и воздухе рабочих. Сущность метода заключается в отборе проб воздуха с частицами свинца на фильтры из целлюлозы с порами 0,8-1,2 мкм или стекловолокна, растворении фильтра и анализе раствора пламенным или электротермическим атомно-абсорбционным методами.
Атомно-абсорбционный метод основан на поглощении света свободными невозбужденными атомами, находящимися в газовой фазе, после их облучения резонансным электромагнитным излучением с частотой, удовлетворяющей условию Еi - Е0 = hν. Оно испускается атомами при переходе их возбужденных электронов на основной уровень
Е0.
Ослабление резонансного излучения, падающего на атомный пар, с интенсивностью I0 до интенсивности I для выходящего светового потока происходит по экспоненциальному закону.
Это закон Бугера - Ламберта - Бера или основной закон светопоглощения:
l
I = I0-10–klC,
где k атомный коэффициент поглощения;
l - толщина поглощающего слоя;
С - концентрация поглощающих частиц.
После логарифмирования закон приобретает вид:
Величина А называется оптической плотностью или абсорбционностью поглощающего слоя свободных атомов. Приведенная выше формула справедлива лишь для монохроматического излучения и в отсутствие химических и физических помех.
Блок-схема прибора для атомно-абсорбционного метода приведена на рис. 4.
6 1 2 3 4 5
Рис. 4. Блок-схема прибора для атомно-абсорбционного анализа: 1 – атомизатор; 2 – монохроматор; 3 – детектор; 4 – усилитель; 5 – регистрирующее устройство; 6 – источник света
В справочнике (М.Т. Дмитриев, Н.И. Казнина, И.А. Пинигина. Санитарно-химический анализ загрязняющих веществ в окружающей среде. – М.: Химия, 1989) описана электротермическая атомно-абсорбционная методика определения паров ТЭС в воздухе после его предварительного концентрирования на силикагеле, экстракции с твердого сорбента этанолом с последующим разложением ТЭС, выделением свинца и его определением в графитовой печи.
Для разрушения ТЭС к этанольному экстракту добавляют несколько кристаллов иода:
(С2Н5)4Pb + I2 = PbI2↓ + 2 CH3(CH2)2CH3
Осадок иодида свинца растворяют в растворе ацетата аммония и полученный раствор дозируют в графитовую печь вместе с градуировочными и холостым растворами. Нижний предел обнаружения 0,0005 мкг, измеряемые концентрации ТЭС от 2,7·10–6 до 2,2·10–5 мг/м3. Мешающее влияние других соединений свинца устраняют, задерживая их фильтром АФА-ХА в процессе отбора пробы воздуха.
Такой же способ концентрирования паров ТЭС на силикагеле используют и в газохроматографическом методе определения 5·10–7 до 2,5·10–4 мг/м3 ТЭС на хроматографе с пламенно-ионизационным детектором. Для определения среднесуточной концентрации ТЭС воздух со скоростью 15 л/мин аспирируют 30 минут через поглотительный прибор, содержащий силикагель, в течение суток. Из полученного твердого концентрата экстрагируют ТЭС четыреххлористым углеродом и полученный экстракт микрошприцем вводят в хроматографическую колонку. Температура термостата колонок 130ºС, испарителя 180ºС. Время удерживания ТЭС 5 мин 15 с.
Современное состояние экоаналитического контроля содержания ТЭС в воздухе – это элементспецифическое хроматографическое его определение с атомно-абсорбционным детектором. Воздух пропускают через капиллярную колонку с сорбентом Порапак, а затем пары ТЭС, выходящие из колонки, попадают на атомно-абсорбционный детектор и регистрируют аналитический сигнал свинца при 283,3 нм. Этим же методом возможно определение алкильных производных олова
(тетраэтилолово, бутилэтилолово и др), ртути, селена, хрома. Другие углеводороды и ЛОС не мешают определению. Недостатком метода является возможность определять только один компонент. Гораздо большие перспективы открываются при использовании атомно-эмиссионного детектора, например, гелиевой или аргоновой плазмы. Возможно определение сразу нескольких металлов и неметаллов. Возможно проводить определение при неидеальной хроматограмме (неполное разделение), высокая чувствительность детектирования. Сопряжение такого детектора с газохроматографическими системами не требует сложных интерфейсов. В принципе атомно-эмиссионный детектор может регистрировать любой элемент, который элюируется из хроматографической колонки.