Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Богачков правл.2.doc
Скачиваний:
398
Добавлен:
30.03.2015
Размер:
9.25 Mб
Скачать

Уравнения Максвелла в дифференциальной форме

; (2.5)

; (2.6)

; (2.7)

. (2.8)

Первое уравнение Максвелла в дифференциальной форме (2.5) показывает, что вихревое магнитное поле создается как плотностью тока проводимости, так и тока смещения.

Второе уравнение Максвелла в дифференциальной форме (2.6) показывает, что вихревое электрическое поле создается изменением во времени индукции магнитного поля.

Третье и четвертое уравнения Максвелла в дифференциальной форме отражают наличие носителей у электрического поля (2.7) и отсутствие носителей у магнитного поля (2.8).

Уравнением непрерывности называют дифференциальную форму закона сохранения заряда

. (2.9)

Из (2.9) следует, что в точках, являющихся источниками jпр , происходит убывание заряда [8]. Без введения тока смещения уравнения системы Максвелла и уравнение непрерывности не выполняются.

Уравнения Максвелла в комплексной форме. В радиотехнике часто используются гармонические колебания. В линейных системах удобно использовать метод комплексных амплитуд. В этом случае от реального сигнала cos (t+z) с помощью добавления мнимой составляющей isin (t+z) по формуле Л. Эйлера переходят к комплексному представлению сигнала exp (i(t+z)).

Когда анализ завершен, для получения окончательного ответа из комплексного результата достаточно выделить действительную часть.

В комплексной форме операции интегрирования и дифференцирования по времени существенно упрощаются

; ;. (2.10)

Комплексную амплитуду (кроме амплитуды в нее входит и начальная фаза) будем обозначать точкой сверху. В комплексной форме уравнения (2.5) и (2.6) будут иметь вид

; (2.11)

; (2.12)

, . (2.13)

Введение делает уравнения (2.11) и (2.12) похожими.

. (2.14)

Тангенс угла диэлектрических потерь. Для оценки соотношения между током проводимости и током смещения удобно ввести величину тангенс угла диэлектрических потерь

==. (2.15)

В зависимости от значения tg среды можно классифицировать так:

диэлектрик;

полупроводящая среда;

проводник.

(2.16)

Из уравнения (2.15) следует, что tg зависит от частоты. Это значит, что одно и то же вещество может на НЧ вести себя как проводник, а на ВЧ – как диэлектрик.

Например, морская вода с параметрами = 1 См/м и = 80 на частотах менее 23 МГц проявляет себя как проводник, а на частотах более 2,3 ГГц – как диэлектрик. Следует отметить, что такие типичные диэлектрики, как фарфор, эбонит, слюда, из-за очень малой проводимости ( <10–12 См/м) даже на очень низких частотах остаются диэлектриками, а металлы из-за очень высокой проводимости ( >106 См/м) остаются проводниками на высоких частотах вплоть до диапазона КВЧ.

При измерениях на высоких частотах tg обычно оказывается больше, чем результаты по уравнению (2.15). Это происходит в основном из-за влияния поляризационных потерь [1, 11], которые суммируются с tg (2.15). Для типичных радиодиэлектриков на высоких частотах именно данный вид потерь является преобладающим [2], поэтому более точным будет определение tg как отношения активной части плотности полного тока смещения к реактивной [1, 2]

, (2.17)

где Э – угол запаздывания по фазе от[1, 2].

Система уравнений Максвелла с учетом сторонних источников. В задачах электродинамики к сторонним источникам относят такие источники ЭМП, которые возбуждают это поле, но сами от него не зависят, так как их поддерживают сторонние по отношению к исследуемому ЭМП физические явления [11]. Например, при определении ЭМП вокруг проволочной антенны целесообразно исключить из анализа ЭМП генератор и линию передачи, которые вместе с антенной образуют единую электродинамическую систему, а влияние происходящих в них процессов учесть введением в систему плотности стороннего тока, что существенно упрощает решение задачи [11].

Таким образом, сторонние величины (jст, ст и т. п.) суммируются (или вычитаются, в зависимости от направления взаимодействия токов или полярностей зарядов) с соответствующими величинами системы уравнений Максвелла.

; ; (2.18)

; . (2.19)

В комплексной форме уравнения (2.18)–(2.19) будут иметь вид

; ; (2.20)

; . (2.21)

Индексы (м) указывают источники магнитного типа. Введение эквивалентных (физически фиктивных) магнитных зарядов и токов может упростить решение некоторых электродинамических задач.

Список рекомендуемой литературы: [1, гл. 3, с. 17–23; 2, с. 28–39; 3, гл. 1–2, с. 16–21; 4, с. 16–21; 5, с. 8–13, 17–18; 6, с. 7–41, 119–121; 7, с. 34–49; 8, с. 5–7; 9, с. 30–38, 51–56; 10, с. 19–38, 51–56; 11, с. 16–42, 48–52; 12, с. 26–37, 46–54; 13, с. 8–29, 36–39, 123–128; 15, с. 199–207; 31].