Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экспрессия генов Патрушев

.pdf
Скачиваний:
1036
Добавлен:
30.03.2015
Размер:
7.15 Mб
Скачать

31

эукариотических клеток, используют необходимую часть их генетического потенциала для своих нужд. Таким образом, простота строения генома

прокариот объясняется, прежде всего, их упрощенным жизненным циклом, на протяжении которого прокариотические клетки, как правило, не претерпевают сложных дифференцировок, связанных с глобальным переключением экспрессии одних групп генов на другие, или тонким изменением уровней их экспрессии, что имеет место в онтогенетическом развитии эукариот.

1.2.1. Геном вирусов

По определению Х. Френкель-Конрата, "вирусы – это частицы, состоящие из одной или нескольких молекул ДНК или РНК, обычно (но не всегда) окруженных белковой оболочкой; вирусы способны передавать свои нуклеиновые кислоты от одной клетки-хозяина к другой и использовать ее ферментативный аппарат для осуществления своей внутриклеточной репликации путем наложения собственной информации на информацию клетки-хозяина; иногда вирусы могут обратимо включать свой геном в геном хозяина (интеграция), и тогда они либо ведут "скрытое существование", либо так или иначе трансформируют свойства клетки-хозяина"2. В приведенном определении отмечены характерные особенности жизненного цикла вирусов, которые находят отражение в организации их генома. Вирусы являются внутриклеточными паразитами и используют для своего размножения белоксинтезирующий аппарат клетки-хозяина. Жизненный цикл вируса начинается с проникновения внутрь клетки. Для этого он связывается со специфическими рецепторами на ее поверхности и либо вводит свою нуклеиновую кислоту внутрь клетки, оставляя белки вириона на ее поверхности, либо проникает целиком в результате эндоцитоза. В последнем случае после проникновения вируса внутрь клетки следует его раздевание – освобождение геномных нуклеиновых кислот от белков оболочки, что делает вирусный геном доступным для ферментных систем клетки, обеспечивающих экспрессию генов вируса.

После проникновения вируса в клетку может происходить его

2 Френкель-Конрат Х. Химия и биология вирусов. М.: Мир, 1972. С. 15.

32

размножение, часто сопровождаемое гибелью самой клетки (вирулентный путь развития). Кроме того, вирус может длительное время существовать внутри клетки, внешне ничем себя не проявляя (латентная инфекция). В этом случае его геном встраивается в геном клетки-хозяина и реплицируется вместе с ним или находится во внехромосомном состоянии. После проникновения вирусной геномной нуклеиновой кислоты в клетку заключенная

вней генетическая информация должна быть расшифрована генетическими системами хозяина и использована для синтеза компонентов вирусных частиц. Поскольку для своего размножения вирусы используют главным образом ферментные системы клетки-хозяина, их геном характеризуется относительно малыми размерами и кодирует структурные белки вирионов, а также белки и ферменты, которые перестраивают метаболизм клетки для нужд размножения вируса, делая процесс репликации вирусов максимально эффективным. Геном вирусов, заключенный внутри вирионов, может быть представлен одноцепочечными или двухцепочечными ДНК или РНК. Кроме того, все гены вирусов могут быть заключены в одной хромосоме или разделены на несколько блоков (хромосом), которые все вместе и составляют геном таких вирусов. Например, у реовирусов геном представлен двухцепочечной РНК и состоит из десяти сегментов. Геномы вирусов, содержащих одноцепочечную РНК, также могут быть либо цельными (например у ретровирусов), либо сегментированными (например у ортомиксовирусов или аренавирусов). Геном РНК-содержащих вирусов представлен только линейными молекулами РНК.

Все известные ДНК-содержащие вирусы позвоночных имеют геном, заключенный в одной хромосоме, линейной или кольцевой, одноили двухцепочечной. У некоторых вирусов, например у вируса гепатита В, геном представлен кольцевой ковалентно замкнутой молекулой двухцепочечной ДНК,

вобеих цепях которой в разных местах обнаружены одноцепочечные участки. У нескольких родов, например адено-ассоциированных вирусов комплементарные цепи ДНК находятся в различных вирусных частицах.

1.2.2.Нуклеоид бактериальной клетки

Каждый, кому приходилось разрушать бактериальные клетки в мягких условиях, например с помощью лизоцима или детергентов, наблюдал

33

Рис. I.1. Нуклеоид E. coli

а – электронно-микроскопические фотографии срезов бактериальных клеток, полученные методом криофиксации. 1 и 2 – один и тот же снимок (последний ретуширован). На фотографии 2 белыми пятнами отмечены области цитоплазмы, свободные от рибосом. На фотографии 3 видны молекулы ДНК, специфически окрашенные с помощью антител; б – модель нуклеоида в функционально-активном состоянии А. Райтера и

А. Чанга. Изображены многочисленные петли активно транскрибируемой ДНК

замечательную картину превращения легко подвижной суспензии бактериальных клеток в вязкую желеобразную массу, простое перемешивание

34

которой требует усилий. Это происходит из-за того, что компактно упакованные гигантские хромосомы бактериальных клеток (длина хромосомной ДНК E. coli составляет 4,6 млн. п.о.) после разрушения оболочки клеток выходят в окружающую среду и свободно в ней распределяются. В лизатах бактериальных клеток их ДНК прочно ассоциированы с белками, освобождение от которых требует проведения многократных фенольных депротеинизаций. Такой простой опыт наглядно указывает на то, что в бактериальных клетках их единственная хромосома сильно компактизована и, возможно, пространственно упорядочена.

Электронно-микроскопическое изучение срезов бактериальных клеток в разных условиях и более ранние исследования бактерий с помощью светового микроскопа продемонстрировали компактное распределение ДНК в бактериальной клетке. Поскольку такие структуры отдаленно напоминали ядра эукариот, они получили название нуклеоидов, или ДНК-плазмы. Эти термины подчеркивают генетические функции нуклеоида, но в то же время и существенные морфологические отличия от обычных интерфазных ядер эукариот, прежде всего, отсутствие ядерной оболочки, которая бы отделяла гены бактерии от окружающей их цитоплазмы. Исследование бактериальных клеток с помощью электронной микроскопии в мягких условиях без предварительной химической фиксации показало, что нуклеоиды представлены в виде диффузно окрашенных областей, свободных от рибосом (рис. I.1,а). При этом вытянутые участки ДНК на внешней части нуклеоидов направлены в окружающую цитоплазму. С помощью специфических антител установлено, что молекулы РНК-полимеразы, ДНК-топоизомеразы I и гистоноподобного белка HU ассоциированы с нуклеоидами. Вытянутые участки ДНК по периферии нуклеоидов обычно интерпретируют как сегменты бактериальной хромосомы, вовлеченные в транскрипцию. Полагают, что эти участки состоят из петель ДНК бактериальной хромосомы, которые в зависимости от физиологического состояния клетки находятся в транскрипционно-активном состоянии или втягиваются внутрь нуклеоидов при подавлении транскрипции. Модель функционально-активного нуклеоида А.Райтера и А.Чанга представлена на рис. I.1,б. По мнению авторов, размытая структура поверхности нуклеоидов, видимая под электронным микроскопом, отражает подвижное состояние активно транскрибируемых петель ДНК. В этой модели четко прослеживается

35

аналогия со структурой хромосом типа ламповых щеток у животных.

Таким образом, нуклеоид бактериальных клеток не является статическим внутриклеточным образованием или компартментом, которые можно четко определять морфологически. Напротив, во время различных фаз роста бактериальных клеток нуклеоид непрерывно меняет форму, что, по-видимому, сопряжено с транскрипционной активностью определенных бактериальных генов. Так же как и в хромосомах эукариот, ДНК нуклеоида ассоциирована со многими ДНК-связывающими белками, в частности гистоноподобными белками HU, H-NS и IHF, а также топоизомеразами, которые оказывают большое влияние на функционирование бактериальных хромосом и их внутриклеточную компактизацию. Однако детальные молекулярные механизмы конденсации бактериальной ДНК с образованием лабильных "компактосом" (по аналогии со стабильными нуклеосомами эукариот) пока неизвестны. В последнее время возрастает интерес к бактериальному так называемому LP-хроматину (low protein chromatin), для которого характерно относительно низкое содержание белкового компонента. Аналогичный LP-хроматин обнаруживают у вирусов, в митохондриях, пластидах и у динофлагеллят (жгутиконосцев). Следовательно, этот тип структурной организации генетического материала претендует на универсальность и ассоциирован с определенными формами регуляции экспрессии генов, свойственными прокариотическим организмам.

В последние годы наблюдается прогресс в исследовании первичной структуры бактериальных хромосом. Определена полная последовательность нуклеотидов хромосом паразитических бактерий: микоплазмы Mycoplasma genitalium и Haemophilus influenzae. В 1997 г. усилиями интернационального коллектива ученых была определена полная первичная структура хромосом E. coli и Bacillus subtilis длиной в 4,6 и 4,2 млн п.о. соответственно Все это позволяет надеяться, что в ближайшее время произойдут новые открытия в области исследований структуры бактериальных геномов и функционирования их генов.

1.2.3. Геном архебактерий

Царство архебактерий представляет собой своеобразную и наименее изученную таксономическую группу прокариот. Хотя по своей морфологии

36

Archeabacteria похожи на привычные эубактерии, на молекулярном уровне они сближены с эукариотами. Эти микроорганизмы часто рассматривают как прокариотические эволюционные предшественники эукариот, в связи с чем представляется целесообразным рассмотреть строение генома архебактерий более подробно.

Архебактерия Methanococcus jannaschii, первичная структура генома которой была полностью определена в 1996 г., обнаружена в горячих морских глубоководных источниках. Энергию для жизнедеятельности этот микроорганизм получает при восстановлении двуокиси углерода до метана молекулярным водородом. Температура, близкая к температуре кипящей воды, является оптимальной для его роста, который может происходить при давлении более 200 атм. M. jannaschii не требует для своего роста органических соединений: все необходимое для жизни он синтезирует из неорганических веществ – CO2, NH3 и т.п. Геном M. jannaschii состоит из основной кольцевой хромосомы и двух небольших внехромосомных элементов, размеры которых составляют соответственно 1700, 58 и 16 т.п.о. Подобные размеры геномов типичны для архе- и эубактерий. Интересно, что GC-состав ДНК этого ярко выраженного термофила невысок и составляет всего 31%. Геном организован компактно: обнаружено 1700 потенциальных кодирующих

участков ДНК, по одному на каждые 1000 п.о.

Многие ДНК-локусы M. jannaschii не обнаруживают гомологии с уже известными последовательностями. Функциональное значение большого числа потенциальных кодирующих последовательностей генома этого микроорганизма остается невыясненным. Таким образом, M. jannaschii отличается от других прокариот и эукариот большим набором только ему свойственных генов и функций. Анализ структуры генома M. jannaschii показал, что гены, организующие системы обработки генетической информации – транскрипции, трансляции и репликации ДНК, в большей степени напоминают гены эукариот, чем бактерий. При этом гены системы трансляции оказались наиболее консервативными (обладали наибольшей гомологией) у прокариот, эукариот и архебактерий. Из них гены рРНК – универсальны, так же как и гены некоторых рибосомных белков. Специфические рибосомные белки M. jannaschii имеют гомологов у эукариот, но не у эубактерий. Большинство распознанных факторов трансляции у этой архебактерии также оказалось эукариотического

37

типа. То же, хотя и в меньшей степени, относится к аминоацил-тРНК- синтетазам.

При сравнительном анализе генов системы транскрипции оказалось, что РНК-полимеразы M. jannaschii и эубактерий обнаруживают гомологию среди субъединиц, формирующих минимальный фермент, однако архебактерия обладает малыми дополнительными субъединицами, которые не свойственны эубактериям, а их гомологи имеются у РНК-полимераз эукариот. Лишь два из основных факторов транскрипции M. jannaschii гомологичны таковым эукариот, а один или два фактора рассматриваются, как "рудиментарные" формы соответствующих эукариотических факторов. Таким образом, система транскрипции архебактерий сегодня представляется как более простая и, возможно, более примитивная версия соответствующей эукариотической системы.

В геноме M. jannaschii найден только один ген, кодирующий ДНКполимеразу, которая напоминает эукариотическую ДНК-полимеразу ε. ДНКполимераза Pol III, осуществляющая репликацию ДНК у эубактерий, не имеет гомолога у M. jannaschii. Высокую гомологию с белками эукариот обнаруживают

идругие белки архебактерии: гистоны, белки, контролирующие деление клетки, протеасомы, факторы элонгации трансляции, белки систем репарации и транспорта. Для M. jannaschii, как и для эубактерий, характерна организация генов в виде оперонов. Однако в первом случае опероны встречаются редко и почти всегда объединяют гены субъединиц белковых комплексов, например РНК-полимеразы, рибосом или метил-коэнзим М-редуктазы. В то же время довольно редки опероны, содержащие гены, объединенные по принципу контроля последовательных метаболических реакций. У M. jannaschii такие гены могут быть случайным образом распределены по геному.

Итак, несмотря на то что архебактерии образуют особое царство и по ряду своих генетических свойств приближаются к эукариотам, размер их генома

инабор основных генов остаются типичными для свободно живущих бактерий.

1.2.4.Минимальный размер генома одноклеточных организмов

Определение минимального размера генома, обеспечивающего все необходимые функции, которые позволяют одноклеточному организму

38

существовать в определенных экологических условиях, не является праздным вопросом. Решение этой проблемы необходимо для понимания происхождения жизни на Земле, а также путей и механизмов совместного эволюционирования генов, объединенных в конкретные геномы, а следовательно, и механизмов возникновения геномов как таковых. Данная проблема была впервые сформулирована Дж. Холдейном в 1920-е годы и с тех пор неоднократно исследовалась. Недавнее (1995 г.) определение полных первичных структур ДНК геномов двух паразитических микроорганизмов (Mycoplasma genitalium и Haemophilus influenzae) дало возможность использовать новый подход для изучения данной проблемы. А.Р. Мушегианом и Е.В. Куниным проведен детальный сравнительный анализ полного набора генов этих микроорганизмов, который позволил составить перечень генов, абсолютно необходимых для существования свободно живущих клеток.

Считается, что геномы M. genitalium и H. influenzae произошли путем последовательного уменьшения размера генома соответственно грамположительных и грамотрицательных бактерий-предшественников с более крупными геномами после отделения их предков от общего предшественника не менее 1,5 миллиардов лет назад. Предполагается, что общие гомологичные гены, сохранившиеся у этих микроорганизмов на протяжении столь длительного периода их существования, являются жизненно важными и составляют основу минимального набора генов, необходимых для автономного существования паразитических клеток. На основе анализа последовательностей нуклеотидов предсказано, что геном M. genitalium, длина

которого составляет

580

т.п.о., кодирует

469 белков, тогда

как

геном

H. influenzae (~1830

т.п.о.)

кодирует 1703

белка. Оказалось,

что

геном

M. genitalium содержит в своем составе 240 генов, имеющих функциональные гомологи в геноме H. influenzae. При теоретической разработке идеального абстрактного генома к набору было добавлено 22 гена, необходимых для осуществления жизненно важных метаболических процессов, которые у этих двух микроорганизмов контролировались негомологичными генами. Одновременно из набора были удалены 6 генов, избыточных с точки зрения выполняемых ими функций, которые обеспечивают специфическое взаимодействие микроорганизмов с хозяевами. Оставшиеся 256 генов, по мнению авторов теоретической разработки, полностью перекрывают

39

потребности абстрактного паразитического микроорганизма. Предлагаемый гипотетический минимальный набор генов, кодирующих 256 белков, должен включать следующие жизненно важные генетические системы микроорганизмов: почти полный набор генов системы трансляции; почти

полный набор генов системы репликации; гены рудиментарной системы репарации и рекомбинации; гены аппарата транскрипции, в котором отсутствуют почти полностью гены регуляции транскрипции; большой набор генов, кодирующих белки, гомологичные шаперонам; гены, контролирующие анаэробный метаболизм, включая гены гликолиза и фосфорилирования субстратов; гены биосинтеза липидов; восемь генов, кодирующих ферменты, которые используют сложные кофакторы; гены системы транспорта белков; ограниченный набор генов, обеспечивающий транспорт метаболитов; полный набор генов утилизации нуклеотидов de novo и гены их биосинтеза; гены биосинтеза аминокислот не включены (поскольку предполагается паразитический образ жизни).

Ранее были использованы еще два подхода для определения минимального размера генома, необходимого для автономного существования микроорганизмов. В одном из них путем введения случайных мутаций определялось число генетических локусов у Bacillus subtilis, несущественных для ее выживания. На основании результатов этих исследований сделан вывод о том, что средний размер минимального генома составляет 318 т.п.о., а его максимальный размер приближается к 562 т.п.о. Полученные значения согласуются с величинами, характерными для M. genitalium. При другом подходе изучались изменения размера генома при переходе от свободно живущих клеток к облигатным внутриклеточным паразитам и органеллам эукариот. При этом риккетсии рассматривались как эволюционные предшественники митохондрий. Работа еще не завершена, поскольку полной первичной структуры генома риккетсий пока не получено.

Таким образом, исследования, проведенные на геномах M.genitalium и H. influenzae, дают в настоящее время наиболее точную оценку минимального набора генов ( 250), необходимых для существования микроорганизмов. Эти результаты будут корректироваться по мере накопления экспериментальных данных о структуре других геномов, что позволит в каждом конкретном случае определять набор именно тех генов, которые делают любой организм

40

уникальным и неповторимым.

1.3. Геном эукариот

Как уже упоминалось выше, в отличие от прокариот основная часть генома эукариот находится в специальном клеточном компартменте (органелле), получившем название ядра, а значительно меньшая часть – в митохондриях, хлоропластах и других пластидах. Так же, как и у прокариот, информационной макромолекулой генома эукариот является ДНК, которая неравномерно распределена по нескольким хромосомам в виде комплексов с многочисленными белками. Эти ДНК-белковые комплексы эукариот получили название хроматина. На протяжении клеточного цикла хроматин претерпевает высокоупорядоченные структурные преобразования в виде последовательных конденсаций–деконденсаций. В соматических клетках при максимальной конденсации в метафазе митоза эти преобразования сопровождаются формированием видимых в микроскопе метафазных хромосом. Как морфология метафазных хромосом, так и их число являются уникальными характеристиками вида. Совокупность внешних признаков хромосомного набора эукариот получила название кариотипа. Эти признаки широко используются в биологической систематике.

Геном эукариот существенно отличается от генома прокариот по ряду признаков, среди которых необходимо отметить его избыточность. Содержание ДНК у эукариот в расчете на одну клетку в среднем на два–три порядка выше, чем у прокариот, и у разных видов животных изменяется от 168 пг (амфибии) до 1 пг (некоторые виды рыб). У человека имеется 6 пг ДНК на диплоидный геном, суммарная длина которой приближается к 6·109 п.о. (см. табл. I.1).

Повышенное содержание ДНК в геноме эукариот нельзя объяснить одним лишь увеличением потребности этих организмов в дополнительной генетической информации в связи с усложнением организации, поскольку большая часть их геномной ДНК, как правило, представлена некодирующими последовательностями нуклеотидов. Размер генома организмов, находящихся на более низких ступенях эволюционного развития, зачастую превышает размеры геномов более высокоорганизованных животных и растений. В настоящее время известно, что большая часть ДНК генома эукариот не