Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экспрессия генов Патрушев

.pdf
Скачиваний:
1036
Добавлен:
30.03.2015
Размер:
7.15 Mб
Скачать

181

молекул рРНК и ассоциированных с ними факторов трансляции. Рибосомы прокариотических и эукариотических организмов различаются по размерам. У эукариот они представлены 80S частицами, тогда как коэффициент седиментации рибосом прокариот составляет 70S. Рибосомы всех известных организмов построены из двух неравных субчастиц: прокариотические – 30S и 50S, а эукариотические – 40S и 60S. 70S рибосомы эубактерий в своем составе содержат 55–60 рибосомных белков, для 80S рибосом эукариот это число составляет 75–85. В обоих случаях рибосомные белки в составе рибосом ассоциированы с молекулами рРНК, образуя пространственно организованные рибонуклеопротеиновые тяжи.

Рибосомные белки E. coli. В настоящее время более 50 рибосомных белков выделено в высокоочищенном состоянии. Молекулярная масса самого маленького белка составляет 5 кДа, а самого большого – 61 кДа, тогда как для большинства рибосомных белков эти значения лежат в пределах 10–20 кДа. Определены аминокислотные последовательности полипептидных цепей всех рибосомных белков E. coli. Малая рибосомная субчастица содержит 21 белок с суммарной молекулярной массой 350 кДа.

Белки в составе 30S субчастицы ассоциированы с 16S РНК, длина которой составляет 1542 нуклеотида (нт). Суммарные молекулярные массы малой и большой субчастиц рибосом достигают соответственно 850 и 1450 кДа. Третья часть массы большой субчастицы приходится на 34 рибосомных белка, а две третьих – на 23S (2904 нт) и 5S рРНК (120 нт). Продолжают накапливаться биохимические данные, указывающие на центральную, возможно ключевую, роль рРНК в обеспечении этапов трансляции. Обнаружены специфические внутримолекулярные и межмолекулярные взаимодействия между различными функциональными участками рРНК. На прямое участие 23S рРНК в трансляции указывает наличие специфических комплементарных взаимодействий между ней и CCA-концами тРНК, акцептирующими аминокислотные остатки. В уточненных пространственных моделях 30S и 50S субчастиц, рассмотренных ниже, сегменты рРНК со специфическими структурными особенностями располагаются в функционально значимых участках рибосом.

Методы исследования пространственной структуры рибосом. Вся информация о пространственной структуре рибосом получена с

182

использованием современных методов, в которых реализуются два направления исследований: структурно-биологические исследования низкого и высокого разрешения, а также биохимические – высокого разрешения. Получаемые результаты, по мере совершенствования методов, все более сближаются друг с другом.

Рис. I.17. Карта сборки 50S субчастицы рибосом E. coli из индивидуальных рибосомных белков и рРНК в процессе реконструкции in vitro

Стрелками обозначены межмолекулярные взаимодействия, удерживающие индивидуальные белки (цифры в кружках) в составе субчастицы, и взаимозависимость сборки. Толщина стрелок отражает прочность связей

Одними из первых следует упомянуть кристаллографию и ЯМРспектроскопию. Имеются значительные достижения в изучении пространственной структуры небольших субдоменов рРНК с помощью ЯМРспектроскопии, а также в исследовании структуры индивидуальных рибосомных белков с использованием методов ЯМР и кристаллографии. В последнее время закристаллизованы отдельные рибосомные субчастицы и 70S рибосомы галофильных и термофильных бактерий. Получены картины дифракции для 50S субчастиц галофилов с разрешением 3 Å, а также рибосом и субчастиц

T. thermophilus с разрешением 7–20 Å. Однако эти картины дифракции, по

183

крайней мере, в 10 раз сложнее тех, с которыми приходилось иметь дело раньше при расшифровке структур несимметричных макромолекул, что сильно затрудняет их интерпретацию. В результате наиболее распространена в настоящее время альтернативная стратегия определения структуры рибосом "по частям": через пространственные структуры индивидуальных рибосомных белков, субдоменов рРНК и их небольших комплексов. Выявленное в ходе этих исследований большое разнообразие пространственных структур рибосомных белков указывает на существование не менее разнообразных механизмов распознавания белками специфических участков РНК, количество которых должно значительно превышать ограниченное число известных механизмов ДНК–белкового узнавания.

184

Рис. I.18. Полупрозрачная модель пространственной структуры рибосомы E. coli (а) и расположение рибосомных белков, а также рРНК в ее 30S-субчастице (б)

Указано положение мРНК, тРНК в А-, Р- и Е-участках рибосомы, белка L1 и "выступа" (stalk) 50S субчастицы. Черными шарами обозначены рибосомные белки, светлыми цилиндрами – спиральные участки 16S

185

рРНК, стрелками – места связывания мРНК, тРНК и антибиотиков, цифрами – рибосомные белки и участки рРНК согласно общепринятой номенклатуре

Другим плодотворным направлением исследования пространственной структуры рибосом при низком разрешении является электронная микроскопия (ЭМ). При этом образцы с рибосомами быстро замораживают в жидком этане в тонком слое буфера и исследуют с помощью ЭМ при температуре жидкого азота и низких дозах облучения для сохранения чувствительных к радиации структур в интактном состоянии. На получаемых в результате микрофотографиях могут одновременно содержаться сотни и тысячи поразному ориентированных индивидуальных рибосом, изображения которых далее подвергаются компьютерному анализу с последующей реконструкцией трехмерной структуры индивидуальной рибосомной частицы. Реконструкцию трехмерных структур работающих рибосом получают в результате анализа микрофотографий ультратонких срезов отдельных бактериальных клеток, активно синтезировавших белок или находившихся в состоянии блока трансляции. Одной из разновидностей ЭМ, активно использующейся для исследования пространственной структуры рибосом, является иммуноэлектронная микроскопия. Первичные и пространственные структуры рибосомных белков, формирующие их эпитопы, значительно различаются, поэтому такие белки редко дают перекрестные иммунологические реакции и их можно четко идентифицировать с помощью специфических антител. При анализе комплексов антител с рибосомами с помощью электронной микроскопии можно видеть, что многие белки локализованы на поверхности рибосомных субчастиц. Оказалось, что пространственное расположение большинства рибосомных белков весьма консервативно. В частности, у грамположительных и грамотрицательных бактерий гомологичные белки занимают одни и те же места на поверхности рибосомных субчастиц.

Важная информация о расположении индивидуальных рибосомных белков в составе рибосом получена и с помощью метода поперечных сшивок. Используя бифункциональные реагенты, например диэпоксибутан или 2- иминотиолан, осуществляют ковалентное соединение рибосомных белков, расположенных по соседству на расстоянии 5–10 Å друг от друга. Поскольку в настоящее время аминокислотные последовательности всех рибосомных

186

белков известны, этим методом можно однозначно определять, какие аминокислотные остатки в соседних белках участвуют в образовании поперечных сшивок.

Целостность рибосом в водных растворах в значительной степени зависит от температуры и ионных условий, особенно от концентрации двухвалентных ионов (Mg2+ и Ca2+). Понижение концентрации ионов Mg2+ приводит вначале к диссоциации рибосом на большую и малую субчастицы, а затем к последовательному упорядоченному освобождению рибосомных белков из субчастиц вплоть до их полного распада с образованием пула отдельных белков и рРНК. Процесс разборки рибосом обратим, и при восстановлении ионных и температурных условий в реакционной смеси возможно реконструирование рибосомных субчастиц из отдельных компонентов с образованием полноценных функционально активных рибосом. На рис. I.17 представлена карта сборки большой субчастицы рибосом E. coli из отдельных компонентов, которая отражает последовательность присоединения рибосомных белков к рРНК, а также два основных этапа сборки. Для перехода ко второму этапу необходимо дальнейшее изменение ионных условий и температуры реакционной среды. Процесс сборки субчастиц рибосом является кооперативным, т.е. присоединение одних рибосомных белков стимулирует включение других. При этом белки, включающиеся в состав рибосомных субчастиц друг за другом, в зрелых субчастицах оказываются расположенными рядом. Реконструирование рибосом из отдельных компонентов in vitro внесло большой вклад в понимание пространственной организации рибосомных субчастиц и функциональной значимости отдельных рибосомных белков.

Метод рассеяния нейтронов на протонах, входящих в состав белков,

также способствовал пониманию пространственного расположения белков в рибосомах. Отклонения нейтронов после контактов с протонами белков можно легко отличить от отклонений, которые являются результатом взаимодействия нейтронов с другими атомами, в частности тяжелыми изотопами водорода (2H или 3Н). Если в состав дейтерированных рибосомных субчастиц ввести два рибосомных белка, содержащих обычные протоны, то по рассеянию нейтронов на протонах, характер которого значительно отличается от такового на дейтронах, можно определить расстояния между центрами масс этих двух белков. Усовершенствованный метод нейтронного рассеяния позволяет

187

определять не только расстояния между рибосомными белками, но и пространственную организацию самих полипептидных цепей в составе рибосомных субчастиц. Полученные таким образом нейтронные карты основаны на измерении расстояний между 93 белками. Такие карты имеют фундаментальное значение в интерпретации экспериментальных данных, полученных другими методами, особенно в результате молекулярного моделирования.

При отсутствии данных рентгеноструктурного анализа высокого разрешения молекулярные биологи традиционно обращаются к молекулярному моделированию пространственных структур. В некоторых случаях такой подход бывает весьма успешным, что особенно ярко проявилось при расшифровке пространственной структуры ДНК. Все модели, описанные в настоящее время, учитывают филогенетические особенности вторичной структуры 16S рРНК, и в некоторых из них принимаются во внимание третичные взаимодействия внутри этих макромолекул. В последнее время для таких целей все чаще используется компьютерный анализ. Применение вычислительной техники сводит к минимуму субъективизм в построении моделей и позволяет систематически исследовать возможные конформационные состояния анализируемых молекулярных объектов. При этом выбор конкретного алгоритма в современном моделировании оказывает меньшее влияние на конечный результат, чем выбор имеющихся экспериментальных данных и использование ограничивающих условий.

На рис. I.18 представлена современная модель пространственной структуры 70S рибосомы E. coli, разработанная в лаборатории Д. Франка (США) с учетом данных, которые были получены с помощью всех вышеперечисленных методов.

2.4.2. Этапы биосинтеза белка

Хотя построение первых моделей механизмов биосинтеза белка было начато еще в начале 1960-х гг., полное описание процесса трансляции далеко до завершения и в настоящее время. Ниже будут кратко рассмотрены основные черты классической модели биосинтеза белка рибосомами E. coli, а также особенности некоторых альтернативных моделей.

Процесс биосинтеза белка рибосомами, как и биосинтез любой другой

188

макромолекулы клетки, условно разделяют на три основных этапа: инициацию, элонгацию и терминацию. Во время инициации трансляции происходит сборка нативной 70S или 80S рибосомы на транслируемой мРНК и подготовка к образованию пептидной связи между первыми двумя N-концевыми аминокислотными остатками синтезируемого полипептида. При элонгации наблюдается последовательное удлинение растущей цепи полипептида аминокислотными остатками, а терминация трансляции сопровождается прекращением синтеза полипептида и его высвобождением из трансляционного комплекса. При этом наблюдается также разделение рибосомы и мРНК, после чего они вступают в новый цикл трансляции. В ходе трансляции рибосома последовательно перемещается вдоль транслируемой молекулы мРНК, считывая заключенную в ней генетическую информацию в виде триплетного генетического кода. Трансляция начинается в 5’-концевой части мРНК, а завершается в ее 3’-концевой части. При этом биосинтез полипептида начинается с его N-концевой аминокислоты. Рассмотрим каждый из вышеперечисленных этапов более подробно на примере белоксинтезирующей системы E. coli.

Инициация трансляции. Биосинтез белка рибосомами начинается с образования комплекса между малой 30S субчастицей рибосом, инициаторной тРНК и участком транслируемой мРНК, содержащим сайт связывания рибосом, который включает в себя инициирующий (как правило, AUG) кодон. В образовании инициационного комплекса с 30S субчастицей принимают участие три белковых фактора инициации – IF1, IF2 и IF3. В ходе этого процесса расходуется одна молекула GTP, которая взаимодействует с IF2 и изменяет его конформацию (см. рис. I.19). Таким образом, на первом этапе образования

инициационного

комплекса

происходит

объединение

свободной

30S субчастицы

с факторами

инициации и

GTP, после

чего с ними

последовательно связываются мРНК и инициаторная тРНК (в случае E. coli, как правило, формилметионил(fMet)-тРНКfMet). Инициаторная тРНК строго специфична для этой стадии белкового синтеза. Сначала она обычным путем акцептирует Met с образованием Met-тРНКfMet, а затем специальная ферментная система E. coli формилирует NH2-группу остатка Met. Последовательность присоединения инициаторной тРНК и мРНК к 30S субчастице не имеет значения, что и отражено на рис. I.19 (стадии А, А’, В,

189

В’).

Рис. I.19. Этапы инициации трансляции у E. coli

Вначале после объединения факторов инициации трансляции, GTP, fMetтРНКfMet и мРНК с 30S субчастицей антикодон тРНК еще не взаимодействует с инициаторным AUG-кодоном (стадии А’ и B’). Такое продуктивное взаимодействие тРНК с мРНК происходит в дальнейшем (стадия C), и этот переход является одной из лимитирующих стадий всего процесса образования инициационного комплекса. С завершением стадии C происходит формирование стабильного тройного (из трех основных компонентов) инициационного комплекса, сопровождаемое конформационными перестройками всех его компонентов. После выхода из комплекса факторов инициации трансляции IF1 и IF3 тройной комплекс приобретает способность связывать большую 50S субчастицу рибосом, что сопровождается дальнейшими конформационными перестройками всей рибосомы (стадия D). В ходе этого процесса происходит расщепление молекулы GTP до GDP и ортофосфата и освобождение из комплекса фактора IF2 (стадия E). Формилметионил-тРНКfMet вместе с инициирующим AUG-кодоном перемещаются в донорный (P) участок рибосомы, освобождая акцепторный (A) участок для следующей аминоацилированной тРНК. В результате

190

инициационный комплекс становится полностью подготовленным для вступления в следующую фазу биосинтеза белка – элонгацию полипептидных цепей.

Элонгация. В соответствии с обсуждаемой моделью принято считать, что после образования тройного комплекса, включающего 70S рибосому, мРНК и инициаторную тРНК, завершается этап инициации трансляции, и процесс биосинтеза белка вступает в фазу элонгации, которая завершается освобождением полипептидных цепей из элонгирующих комплексов. Во время элонгации происходит последовательное присоединение аминокислотных остатков к C-концевым частям строящихся полипептидных цепей, направляемое кодонами транслируемых матричных РНК.

Рис. I.20. Элонгация полипептидных цепей

Стрелки указывают на реакции, подавляемые соответствующими антибиотиками

Этап элонгации начинается со взаимодействия фактора элонгации