- •1.2. Типы каталитических процессов и реакторов
- •Реакторы с псевдоожиженным (кипящим) или восходящим слоем катализатора (рис. 1.5).
- •2. Основные принципы синтеза катализаторов
- •2.1. Технические характеристики контактных масс
- •2.2. Состав и пористая структура твердых катализаторов
- •2.3. Воздействие реакционной среды на катализатор
- •Спекание
- •3. Технология производства катализаторов
- •Окатывание
- •Таблетирование
- •3.1. Осажденные контактные массы
- •3.2. Катализаторы на носителях, получаемые методом пропитки
- •3.3. Катализаторы, получаемые механическим смешением
- •3.4. Плавленые и скелетные контактные массы
- •3.5. Катализаторы на основе цеолитов
- •4. Методы исследования катализаторов
- •4.1. Исследования элементного состава
- •4.2. Методы определения активности
- •4.3. Исследование пористой структуры катализаторов
- •4.4. Определение истинной и кажущейся плотности катализатора
- •4.5. Определение механической прочности
- •4.6. Термопрограммируемое восстановление катализаторов
- •Заключение
4.1. Исследования элементного состава
Элементный состав является одной из наиболее важных характеристик гетерогенного катализатора. От него во многом зависит каталитическая активность, селективность и область применения катализатора. Знание элементного состава необходимо как для оценки качества свежих, неотработанных катализаторов, так и для установления причин снижения их каталитической активности в процессе работы.
Рентгеноспектральный метод определения химического состава вещества - один из наиболее развивающихся методов современной науки. Наибольший интерес для решения этих задач представляют методы энергодисперсионной рентгенофлуоресцентной (EDXRF) спектроскопии, которые идеально подходят для одновременного определения нескольких элементов в катализаторах в диапазоне концентраций от нескольких ppm до весовых %.
Эти методы основаны на измерении интенсивности рентгеновского флуоресцентного излучения анализируемых элементов и последующем расчете их массовой доли по предварительно построенной градуировочной характеристике. Метод отличается высокой точностью и воспроизводимостью благодаря относительно небольшой погрешности. Подготовка проб минимальна и весь анализ занимает несколько минут.
Определение элементного состава катализаторов методом энергодисперсионной рентгенофлуоресцентной спектрометрии проводят на рентгеновском энергодисперсионном спектрометре. Прибор оснащен кремний-литиевым (Si(Li)) детектором электрически охлаждаемым шестиступенчатыми холодильниками Пелтье до - 110 °С и охлаждаемой воздухом 50 Вт родиевой (Rh) рентгеновской трубкой, обеспечивающей широкий диапазон напряжений возбуждения (4 —50 кВ), которые регулируются с шагом 1 кВ. Комплект из семи фильтров первичного излучения предназначен для оптимизации отношения сигналов пика к сигналам фонам для всех элементов от Na до U.
Используемый в спектрометре кремний-литиевый детектор позволяет эффективно регистрировать и преобразовывать высокоэнергетическое излучение по наиболее интенсивной K-линии даже элементов с большим атомным номером, таких как Mo, Ag и W.
4.2. Методы определения активности
Для определения каталитической активности необходимо измерить скорость реакции в заданных условиях при отсутствии диффузионных искажений. Эти измерения обычно проводят при одинаковой и постоянной температуре в реакторе.
Методы, используемые для измерения каталитической активности, можно разбить на две группы: 1) статические, осуществляемые в закрытых системах; 2) проточные, реализуемые в открытых системах [8].
При использовании статического метода реакцию проводят в замкнутом объеме до установления термодинамического равновесия либо до полного превращения одного из исходных реагентов. Концентрация реагентов изменяется от исходной до равновесной, соответственно изменяется и скорость реакции по закону действующих масс.
Часто статический метод используют для измерения скоростей реакций, приводящих к изменению числа молекул, что позволяет следить за ходом реакции по изменению давления.
Статические методы рекомендуется применять лишь для изучения катализаторов стационарных в отношении реакционных смесей [1, 8].
В проточных установках поток реагентов непрерывно пропускают с определенной скоростью через реакционный объем, содержащий катализатор. На входе и выходе из реактора производят замеры параметров процесса, анализы состава реакционной смеси.
Проточные методы позволяют проводить кинетические исследования в установившихся условиях, т. е. при постоянстве исходных концентраций, температур, давления, степени перемешивания и других параметров в каждом отдельном опыте. При переходе от одного опыта к другому изменяют определенные параметры процесса на заданное значение.
Проточный метод [1, 8] является интегральным и непрерывным и позволяет осуществлять процесс как угодно долго при заданных концентрациях, температурах, давлениях, линейных и объемных скоростях газового потока на входе в реактор. Естественно, что концентрации реагирующих веществ и другие параметры изменяются по длине (высоте) реактора в результате химического превращения. Аппаратурное оформление таких установок проще, а чувствительность ниже, чем статических.
При использовании проточного метода с неподвижным слоем катализатора в реакторе обычно допускают, что движение газа в слое катализатора отвечает режиму идеального вытеснения, т.е. пренебрегают радиальными градиентами давления, температуры, концентрации. Основное достоинство проточного метода - возможность определения каталитической активности при стационарном состоянии катализатора. Существенным недостатком является невозможность прямого измерения скорости реакции и трудность осуществления в реальных условиях режима идеального вытеснения [8].
На рис. 4.1 приведена общая схема проточной установки для определения активности катализатора окисления SO2 [19].
Рис. 4.1. Стандартная установка для испытания активности катализаторов окисления SO2 проточным методом:
1 — склянка Дрекселя;
2 — смеситель газов;
3 — реактор;
4 — нагревательная печь;
5 — поглотительная склянка с серной кислотой;
б — аспиратор;
7 — анализатор;
8 — термопара
Газовую смесь через смеситель 2 направляют в реактор с контактной массой. Реактор 3 помещен в электрическую печь 4, снабженную тремя самостоятельно регулируемыми нихромовыми спиралями. Это дает возможность регулировать температуру отдельно в разных частях слоя контактной массы с достаточным приближением к изотермичности температуры. Колебания температуры по слою не должны превышать 5°С. Концентрацию SO2 определяют до реактора и после него.
Безградиентный проточно-циркуляционный метод |1] предполагает практически полное отсутствие в реакционной зоне перепадов концентраций и температур. Перемешивание в проточно-циркуляционной системе достигается интенсивной циркуляцией реакционной смеси через катализатор в замкнутом объеме при непрерывном поступлении и выведении газового потока, причем количество циркулирующего газа должно значительно превышать количество вновь вводимого исходного газа. Схема циркуляционного контура представлена на рис. 4.2.
Рис. 4.2 Схема проточно-циркуляционной установки со стеклянным поршневым электромагнитным насосом:
1 — реактор с катализатором;
2 — печь;
3 — ротаметр;
4 — стеклянные фильтры;
5 — краны;
6 — циркуляционный насос;
ба — цилиндр, 66 — клапанная коробка
Высокая линейная скорость реакционной смеси в цикле и малая степень превращения обусловливают минимальные градиенты концентраций и температур, при этом слой можно рассматривать как бесконечно малый, а реактор как аппарат идеального смешения.
Основные достоинства проточно-циркуляционного метода:
1. Прямое измерение скорости реакции в каждом опыте.
2. Легкость достижения постоянства температуры в реакторе, даже для реакций со значительным тепловым эффектом, благодаря интенсивной циркуляции и соответственно малому изменению степени превращения в слое катализатора [8].
3. Осуществление процесса в режиме, аналогичном полному смешению, т. е. без внешнедиффузионных торможений, при практическом отсутствии перепадов концентраций и температур.
4. Возможность работы с любым количеством катализатора, вплоть до одной гранулы, при любых размерах гранул и соотношениях размеров гранул и реактора.
Искажение, связанное с переносом внутри зерен (т. е. внутридиффузионное торможение), сохраняется. Снятие его требует уменьшения размера зерен катализатора при испытании. Сохраняя неизменным химический состав и изменяя размеры зерен катализатора, можно выявить влияние пористой структуры на активность контактной массы, т. е. определить внутридиффузионное торможение при различных размерах зерен, а также их максимальный размер, соответствующие переходу от внутридиффузионной области к кинетической [1].
К недостаткам проточно-циркуляционного метода можно отнести:
1. Сложность аппаратурного оформления.
2. Необходимость достаточных количеств исходных веществ и времени для достижения стационарного состояния, в некоторых случаях - возможное усиление побочных процессов.
Импульсные методы исследования активности катализаторов предусматривают использование хроматографического адсорбента в качестве катализатора с периодической подачей на него реагирующих веществ. В хроматографической колонке происходит разделение продуктов и непрореагировавших компонентов реакционной смеси [1].
В импульсном каталитическом микрореакторе через систему пропускают с постоянной скоростью газ-носитель (инертный или один из реагентов), в который введен реагент. Из реактора газ-носитель поступает в термостатированную колонку газового хроматографа и затем в детектор.
Метод позволяет за короткий срок оценить относительную активность и селективность большого числа катализаторов при варьировании температуры и в небольших пределах времени контакта. Необходимо, однако, помнить, что импульсное введение компонентов реакционной смеси исключает возможность достижения стационарного состояния катализатора. Измеренная таким способом активность может в некоторых случаях очень существенно отличаться от стационарной активности исследуемых катализаторов. Эти отличия зависят от кинетических особенностей изучаемой реакции, наличия диффузионных процессов и других факторов [8].