
- •Т. А. Сливина математическая логика и теория алгоритмов
- •Глава I. Логика высказываний 6
- •Глава 1 логика высказываний
- •§ 1. Логические операции над высказываниями
- •§ 2. Формулы логики высказываний. Основные равносильности и преобразования
- •1. Основные равносильности
- •2. Равносильности, выражающие одни логические операции через другие
- •3. Равносильности, выражающие основные законы алгебры логики
- •§ 3. Алгебра Буля. Функции Буля. Представление произвольной функции алгебры логики в виде формулы алгебры логики
- •§ 4. Дизьюнктивная нормальная форма и совершенная дизьюнктивная нормальная форма. Коньюнктивная нормальная форма и совершенная коньюнктивная нормальная форма
- •§ 5. Приложения алгебры логики в технике и других областях
- •Задачи и упражнения
- •Глава 2 исчиление высказываний
- •§ 1. Этапы построения исчисления высказываний. Понятие формулы исчисления высказываний
- •§ 2. Определение доказуемой формулы. Правила вывода и заключения
- •§ 3. Производные правила вывода
- •§ 4. Выводимость формул из совокупности формул
- •§5. Доказательство некоторых законов логики
- •3. Закон разъединения посылок
- •5. Закон исключенного третьего: ├
- •§6. Связь между алгеброй высказываний и исчислением высказываний
- •§7. Проблемы аксиоматического исчисления высказываний
- •1. Проблема разрешимости исчисления высказываний.
- •3. Проблема полноты исчисления высказываний.
- •4. Проблема независимости аксиом исчисления высказываний.
- •Задачи и упражнения
- •Глава 3 логика предикатов
- •§ 1. Понятие предиката. Логические операции над предикатами. Кванторные операции.
- •§ 2. Понятие формулы логики предикатов. Значение формулы логики предикатов
- •§ 3. Равносильные формулы логики предикатов. Предваренная нормальная форма
- •§ 4. Общезначимость и выполнимость формул. Проблема разрешимости для общезначимости и выполнимости, неразрешимость ее в общем случае
- •§ 5. Применение языка логики предикатов для записи математических предложений, определений, построения отрицания предложений
- •§ 6. Замечание об аксиоматическом исчислении предикатов
- •Задачи и упражнения
- •Глава 4 математические теории
- •§ 1. Теории первого порядка. Основные понятия
- •§ 2. Примеры математических теорий из алгебры, анализа, геометрии
- •1. Теория частичного упорядочения.
- •2. Теория групп.
- •3. Аффинная геометрия.
- •§ 3. Интерпретация языка теории
- •§ 4. Проблемы непротиворечивости, полноты, разрешимости теории
- •2. Проблема полноты.
- •3. Проблема разрешимости.
- •Глава 5 алгоритмы
- •§ 1. Понятие алгоритма и его характерные черты
- •§ 2. Разрешимые и перечислимые множества
- •§ 3. Уточнение понятия алгоритма
- •§ 4. Вычислимые функции. Частично рекурсивные и общерекурсивные функции
- •1. Суперпозиция функций.
- •2. Схема примитивной рекурсии.
- •§ 5. Машины Тьюринга
- •§ 6. Нормальные алгоритмы Маркова
- •§ 7. Неразрешимые алгоритмические проблемы (обзор)
- •1.Неразрешимость проблемы распознавания выводимости в математической логике.
- •3. Проблема эквивалентности слов для ассоциативных исчислений.
- •4. Неразрешимость десятой проблемы Гильберта о диофантовых уравнениях.
- •Задачи и упражнения
- •Заключение
- •Библиографический список
- •Математическая логика и теория алгоритмов
- •660014, Красноярск, просп. Им. Газ. «Красноярский рабочий», 31.
- •660028, Г. Красноярск, ул. Водопьянова, 2-241.
§ 2. Формулы логики высказываний. Основные равносильности и преобразования
Определим понятие формулы логики высказываний.
Алфавит
логики высказываний состоит из трех
групп символов: высказывательные
переменные a,
b,
c,
d,
…, x,
y,
z;
логические символы ,
,
→, ↔, −; символы скобок ( , ). Словом в
алфавите называется произвольная
конечная последовательность символов.
Слово в алфавите логики высказываний называется формулой, если оно удовлетворяет следующему определению:
1) любая высказывательная переменная – формула;
2)
если А и В формулы, то слова ,
,
,
,
– формулы;
3) только те слова являются формулами, для которых это следует из 1) и 2).
Например:
()
или
Скобки указывают порядок выполнения действий.
Скобки в формулах можно опускать, придерживаясь следующего порядка выполнения действий: коньюнкция, дизьюнкция, импликация и эквиваленция.
Пример.
1)
равносильно
2)
равносильно
.
Логическое значение формулы полностью определяется логическими значениями входящих в нее элементарных высказываний.
Пример.
При
x
= 1, y
= 1, z
= 0 формула
Логическое значение формулы изменяется в зависимости от изменений значений элементарных высказываний, входящих в формулу. Все возможные логические значения формулы могут быть описаны полностью с помощью таблицы истинности.
Пример.
Таблица
истинности логических значений формулы
будет следующая:
x |
y |
|
|
|
|
|
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
Если формула содержит n элементарных высказываний, то она принимает 2n значений. Таблица истинности будет содержать 2n строк.
Две формулы алгебры логики A и B называются равносильными, если они принимают одинаковые логические значения на любом наборе значений, входящих в формулы элементарных высказываний.
Обозначается равносильность ≡, т. е. A ≡ B.
Пример.
Следующие формулы являются равносильными:
Формула А называется тождественно истинной (или тавтологией), если она принимает значение 1 при всех значениях входящих в нее переменных.
Пример.
Следующие формулы являются тавтологиями:
Формула А называется тождественно ложной, если она принимает значение 0 при всех значениях входящих в нее переменных.
Пример.
Формула
является тождественно ложной.
Отношение равносильности обладает следующими свойствами: оно рефлексивно, симметрично и транзитивно.
Между
понятиями равносильности и эквивалентности
существует следующая связь: если формулы
А
и В
равносильны, то формула
– тавтология, и обратно, если формула
– тавтология, то формулы А
и В
равносильны.
Равносильности алгебры логики используются для того, чтобы любую формулу алгебры логики можно заменить равносильной ей формулой.
Важнейшие равносильности алгебры логики можно разбить на три группы.