Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
7
Добавлен:
18.12.2022
Размер:
4.15 Mб
Скачать

Schwann cells, 953, 956, 971, 971f Sclerosis, hepatic, 713t

Scurvy, 14t, 118, 979 Seborrheic dermatitis, 474

Secondary active transport, 177, 182 Secondary amines, 64

Secondary bile salts, 676–678, 677f, 678f Secondary hemostatic plug, 893

Secondary hypertension, 853 Secondary lactase deficiency, 423

Secondary structure of proteins, 100, 100f, 102, 103–105 α-helices of, 100, 103, 103f

β-sheets of, 100, 103–104, 104f motifs of, 105

nonrepetitive, 104, 104f patterns of, 105

Second law of thermodynamics, 397t Second messengers, 190–191

cAMP, 159, 191, 204–205 cGMP, 207

DAG, 191

IP3, 191receptors working through, 197, 198, 198f Second principle of metabolic regulation, 164 Secretagogues, 864

Secretin, 596–597, 860 Secretion granule, 170f Secretory tumors ACTH-secreting, 855

catecholamine-secreting, 853, 954, 961, 963, 964, 973, 975t diagnosis of, 864

growth hormone-secreting, 847, 849, 850, 851, 864 Sedimentation coefficient, 224

Sedoheptulose 7-phosphate, 547–548, 547f, 548f Seeding, amyloid, 105

Selective COX-2 inhibitors, 645

Selective serotonin reuptake inhibitors (SSRIs), 954, 965, 973 Selenium, 516

Selenocysteine, 94, 94f

Semiconservative replication, 230f, 231, 232f, 237f Semiquinone, 462f, 485, 485f

Sense (coding) strand, 254, 254f

Sepsis, amino acid metabolism in, 823, 823f, 824, 836–838, 838f Sequestration, hepatic, 910

Serine, 72, 72f, 84f, 85t, 86 cysteine synthesis from, 774, 775f deamination of, 755

degradation of, 472, 472f, 770–771, 771f, 773 for gluconeogenesis, 571

glycine synthesis from, 774, 774f, 953, 968 in nucleotides, 544

one-carbon groups from, 790, 790f, 794, 794f in sphingolipid synthesis, 632–633, 656

synthesis of, 769, 770f, 772–773, 773f, 794, 968 Serine dehydratase, 755, 773

Serine hydroxymethyltransferase, 794

Serine protease(s), 740, 743t, 897–904, 898f Serine protease inhibitors (serpins), 902–903 Serine–threonine kinase

as oncogene, 349–350, 350t PFK-2 regulation by, 450

Serine–threonine kinase receptors, 190, 198f, 202–203, 202f Serotonin, 896, 897, 953, 958

in appetite/weight loss, 954, 965, 973 inactivation of, 963, 964f

metabolism of, 963

in mood (depression), 965 synthesis of, 963, 964f Serpins, 902–903

Serum

definition of, 346 transformed cells in, 346 Serum amyloid, 114

70S ribosome, 224

Severe acute malnutrition (SAM), 13

Severe combined immunodeficiency syndrome (SCID), 336, 337, 819, 882, 890t Sex chromosomes, 221, 222f

Sex hormone-binding globulin, 895t

SH2 (Src homology) domains, 190, 198, 199, 200, 386Shellfish, contaminated, 170, 430 Shine–Dalgarno sequence, 281

Shivering thermogenesis, 403 Shock, hypovolemic, 191

Short-chain acyl-CoA dehydrogenase (SCAD), 611t Short-chain fatty acids, 607

Short interspersed elements (SINEs), 266 Short tandem repeats (STRs), 333 Shuttle systems

glycerol 3-phosphate, 434, 434f, 488, 488f malate–aspartate, 434, 434f, 443f, 488, 488f Sialic acid, 919t

Sickle cell anemia, 81, 94, 97t, 125t amino acid substitution in, 86, 87, 88, 90 cholecystitis in, 595, 598, 602, 604t fetal hemoglobin and, 869

gallstones in, 81, 883 gene therapy for, 869

genetics of, 80, 88, 89, 90, 223

genetic testing for, 320, 330, 335, 339, 341t hemoglobin S (HbS) in, 80, 86, 87, 88 90, 112, 884 malaria protection in, 90

missense mutation in, 278 protein structure in, 112

restriction enzyme in, 322, 330, 335 stroke prevention in, 121–122

vaso-occlusive crisis in, 81, 90, 101, 112, 121–122 Sickle cell trait, 223, 320, 330, 335, 339

Side chain(s), 80, 81f, 82–83 classification of, 80, 83–88, 84f functional groups of, 80, 81f, 134, 134t hydrophobicity of, 80, 83, 84f

polarity of, 80, 83, 84f in protein folding, 117

Sieves, proteoglycans as, 986

Sigma (σ) factors, 253, 257–258, 299–300 Signaling pathways, intercellular, 1 Signal-recognition particle (SRP), 285–286, 285f Signal (targeting) sequences, 285–287

Signal transducer proteins, 190, 198, 198f Signal transduction, 190, 190f amplification in, 387

cellular effects of, 197 cortisol in, 388

cytokine receptors in, 201–202, 202f epinephrine in, 388

glucagon in, 386–387

heptahelical receptors in, 203–205 heterotrimeric G-proteins in, 203–204, 204f

insulin/insulin receptor in, 200–201, 200f, 201f, 377, 386, 389 for intracellular receptors, 190, 388–389

norepinephrine in, 388 oncogenes and, 349–351

Patched/Smoothened system of, 355, 356f, 362

phosphatidylinositol bisphosphate (PIP2) –Ca2+ system of, 536, 536f phosphatidylinositol phosphates in, 199–200, 200ffor plasma membrane receptors, 190– 191, 197–206, 385–388

principles of, 387

serine–threonine kinase receptors in, 202–203, 202f termination of, 206, 206f

tumor-suppressor genes and, 355

tyrosine kinase receptors in, 198–201, 199f upstream and downstream events in, 197 Silencing, gene, 319, 335

Silent mutations, 277t, 278

Simple diffusion, 174–175, 175f, 176 Simple product inhibition, 155, 156

Single nucleotide polymorphisms (SNPs), 339–340 Single-strand binding proteins, 230, 238t Singlet oxygen, 507t

Sinusoids, hepatic, 910–912, 911f Sirtuins, 626–627, 627f, 714 Sister chromatids, 214 Sitagliptin, 863

Site-specific transcription factors, 196 Sitosterolemia, 669

16S rRNA, 224

60S ribosomal subunit, 224, 263, 263f Skeletal muscle, 844, 932–934, 934f

amino acid metabolism in, 751, 752f, 755–757, 823, 830–832, 941–942, 947 conversion of branched-chain amino acids to glutamine, 830–832, 831f fasting state, 36, 37, 825–827, 826f

after high-protein meal, 835–836, 835f in hypercatabolic states, 836

oxidation of branched-chain amino acids, 823, 825, 827, 830, 831f, 941, 947 contraction of, 935–936

energy (ATP) for, 399, 399f, 936, 937f sliding filament system in, 932, 936, 937f creatinine release from, 35

fasting state and, 34–41, 825–827

fatty acid oxidation in, 624, 726, 932, 938, 938f, 941–942, 946–947, 946f fibers of, 449, 844, 932–934, 934t

fuel use in, 939–948 acetate, 947

amino acid, 947

ATP from creatine phosphate, 939–941, 940f during exercise, 942–947

fatty acid, 946–947, 946f glucose, 938, 942–945

during high-intensity exercise, 944

during mild and moderate-intensity long-term exercise, 945, 946f at onset of exercise, 942

at rest, 941

during starvation, 941–942

glucose metabolism in, 28, 28f, 580, 580f, 582f, 726, 942–945 AMP activation in, 942–943, 943f

in glycolysis/anaerobic glycolysis, 444, 938, 939, 942–945 in type IIb fast-twitch fibers, 942

glucose transport in, 428, 428f, 932

glycogen metabolism in, 525–527, 527f, 532, 532t, 537–538, 537f, 726, 942–943 ATP availability and, 537

calcium and, 526, 532, 538

diabetes mellitus and, 535epinephrine and, 526, 532, 853, 854f glycogen stores in, 7, 7t, 371, 525–526, 527, 527f, 943 growth hormone and, 851

insulin and, 526–527, 538, 539, 941–942 ketone body usage in, 34, 37, 38, 725t la

ctic acid/lactate in, 445, 449, 451, 473, 945 metabolic capacities of, 37, 38t

nitrogen export from, 756–757, 756f protein turnover in, 743

purine nucleotide cycle in, 806, 811, 813f, 830–832, 832f, 947 striations of, 933, 934f

thyroid hormone and, 859 training effects in, 947–948 Skin cancer, 346

melanoma, 231, 240, 246, 248t, 345, 363 UV radiation and, 240, 346, 347 Skinfold thickness, 30

Sliding filament system, in muscle contraction, 932, 936, 937f Slow-oxidative fibers, 449, 844, 932–934, 934t

Smad proteins, 198, 198f, 202–203, 202f, 308, 362 SmaI restriction enzyme, 321t

Small interfering RNA (siRNA), 319, 335 Small intestinal disaccharidases, 419–421 Small neutral amino acids, 958

Small nitrogen-containing neurotransmitters, 194, 194f, 953, 958–968 Small nuclear ribonucleoproteins (snRNPs), 225, 261, 262f

Smith proteins, 262 Smoking

and COPD, 435

and lung cancer, 231, 240, 246, 361

Smooth endoplasmic reticulum, 170f, 181, 182f Smoothened receptors, 355, 356f, 362

Smooth muscle, 932, 934–935, 934f

Smooth muscle contraction, eicosanoids in, 638

Snurps (small nuclear ribonucleoproteins), 225, 261, 262f SOCS (suppressor of cytokine signaling), 202, 882, 882f Sodium/sodium ions (Na+)

in action potential, 192–193, 193f cotransport with amino acids, 741–742, 741f dietary guidelines on, 18

distribution in body fluids, 49, 50t function of, 15

in hypoxia and cell death, 410, 410f Sodium chloride, dissociation of, 51

Sodium (Na+)-dependent transporters, 415, 426, 427f, 430 amino acid transport in, 738, 741–742, 741f Sodium-glucose transporter, 177, 178f

Sodium–iodide transporter, 856–857

Sodium–potassium–ATPase pump, 177, 177f, 394, 399, 426, 742, 860 Sodium–potassium pump, 49

Solenoid, 221, 222f Solubility

bond polarity and, 65, 66f of globular proteins, 107 Soluble fiber, 424

Solvent(s)protein denaturation in, 119 water as, 47, 48, 49

Soma, 955, 955f Somatocrinin (GHRH), 850

Somatomedins (insulinlike growth factors), 843, 847, 850–853, 851f, 852f Somatostatin, 846t, 848–849, 861t

biochemistry of, 848 counterregulation by, 843, 845, 846t and growth hormone, 849, 850 physiologic effects of, 848–849 secretion of, 848

Somatostatin analogs, 849 Sorbitol, 68, 69f, 435, 441 SOS, 199, 199f

Southern, E. M., 324

Southern blots, 324, 325f Specialization, cellular and tissue, 1 Specificity, 387

of β-oxidation, 611t, 614, 922

of enzymes, 129, 130–132, 130f, 136 of receptors, 191

Spectrin, 173f, 174, 879–880, 880f Spectrin deficiency, 870, 886–887 Spermatozoa, fructose as fuel for, 441 Sperm cells, 221

S phase of cell cycle, 230, 235–236, 236f Spherocytes, 869, 870

Spherocytosis, 870, 886–887, 890t Sphingolipid(s), 62, 72, 72f, 558, 591, 656 in brain, 971

degradation of, 656 functions of, 651, 656 metabolism of, 632–633, 656 in plasma membrane, 172, 172f structure of, 633f

synthesis of, 544, 558–559, 632–633, 656, 657f types of, 651f

Sphingolipidoses, 287, 559, 559t, 563t, 656. See also Tay–Sachs disease Sphingomyelin, 72, 72f, 172, 172f, 633, 633f, 656

in amniotic fluid, 659, 659f in brain, 971–972

Sphingosine, 72, 72f, 172, 558, 633, 633f, 651, 656 Spina bifida, 791, 800–801

Spin restriction, 506 Spleen

enlarged, 870, 886–887

in sickle cell anemia, 90, 598 Splice junction(s), 261, 261f

Splice-junction mutations, in β-thalassemia, 261, 288t, 884 Spliceosome, 261

Splicing reactions, 251, 261, 261f, 262f, 310, 310f Sporadic retinoblastoma, 354, 354f

Squalene, 666, 671–673

condensation of isoprenes to, 671–672, 672f conversion to steroid nucleus, 672–673, 673f structure of, 672, 672f

SREBP cleavage-activating protein (SCAP), 673, 674fStability of mRNA, 313

of protein, 101, 109 Stable conformation, 101

Staphylococcus aureus, 544–545, 559–560 Starch, 5, 5f, 369

consumption of, 418

digestion of, 25, 415, 418–425, 419f indigestible, 422, 422f

metabolism by colonic bacteria, 422 structure of, 415, 416f, 418 Starch blockers, 418

Starling’s forces, 894 Start codon, 224, 224f, 274

Start point of transcription, 251, 251f, 252–253 Starvation (prolonged fasting), 34, 37–40, 39f, 39t adipose tissue in, 38–40

anorexia nervosa and, 40–41 death vs. survival, 39–40 fuel usage during, 725t

glucose levels and metabolism in, 38, 39, 568f, 578, 579t, 583, 583f, 584, 584f ketone bodies in, 583, 623, 724–726

liver in, 38

protein synthesis in, 38

skeletal muscle metabolism in, 941–942

Statins, 659, 667–668, 668t, 670, 673, 688, 695–696, 696t, 915 STAT receptors, 198, 198f, 201–202, 202f, 308, 656–657, 882–883 Stearate, 6f, 609–610

Stearic acid, 69, 71f, 638, 922

Stearyl coenzyme A (stearyl-CoA), 637, 640f Steatorrhea, 598, 599

Stellate (Ito) cells, 713–714, 714f, 912–913, 928 Stem cells

differentiation of, 314, 880, 881f hematopoietic, 843, 869, 880–883, 881f Stem cell transplantation, 362 Stereoisomers, 62, 66–67, 67f Steroid(s), structure of, 62, 72, 73f

Steroid hormones, 62, 194, 196–197, 196f, 591, 689–695 functions of, 591

synthesis of, 591, 666, 667, 674, 689–695, 691f transport of, 689–690

types of, 667

Steroid hormone/thyroid hormone superfamily, 196–197, 196f, 305–306, 305f Steroid nucleus, 72, 73f

squalene conversion to, 672–673, 673f Sterol-regulatory element (SRE), 673, 674f, 685

Sterol-regulatory element-binding proteins (SREBPs), 673, 674f, 685 Stomach

hydrochloric acid of, 56

protein digestion in, 738, 739–740, 739f Stop codons, 224, 224f, 274 Streptococcus mutans, 451

Streptococcus pneumoniae, 214, 275, 287 Streptokinase, 904, 904f

Streptomycin, 281, 289, 289t

Streptomycin monosomes, 289Stress hormones, 388. See also Epinephrine; Norepinephrine

Striated muscle cardiac, 934f, 935 skeletal, 933, 934f Stringency of probe, 323 Stroke, 953 atherosclerosis and, 689

sickle cell disease and, 121–122 Strong acids, 47, 51–52, 51t Structural analogs, 150 Structural domains, 105–106 Structural genes, 296

Structural proteins, 8, 844, 972, 978 Structure–function relationships

in immunoglobulins, 114–116

in myoglobin and hemoglobin, 109–114 in proteins, 100–124

Subintimal extracellular matrix, 687, 688f Substituted sugars, 67–68, 68f Substrate(s), 128, 129–133

binding of

induced-fit model of, 130, 131–132, 131f, 132f lo

ck-and-key model of, 130–131

channeling, through compartmentation, 163–164 concentration of, 150, 151–154, 152f, 153f, 154f enzyme specificity for, 129, 130–132, 130f, 136 in multisubstrate reactions, 154

Substrate analogs, 140 Substrate-binding sites, 128, 130–132 Substrate cycling, 527–528 Substrate-level phosphorylation

in glycolysis, 375, 434, 435f, 436, 438–440, 439f in tricarboxylic acid cycle, 461 Substrate-recognition sites, 130, 130f Subunit(s), of proteins, 100, 108–109

Subunit vaccines, 338 Succinate

in cancer, 520–521

as energy source, 462, 463 oxidation to oxaloacetate, 460f, 461 Succinate dehydrogenase, 459, 461 Succinate thiokinase, 459, 461 Succinyl-CoA synthetase, 461 Succinyl coenzyme A (succinyl-CoA)

α–ketoglutarate conversion to, 460–461, 460f, 464, 464f

amino acid metabolism to, 771, 771f, 774, 775f, 776, 779–781, 779f, 780f, 830, 831f anaplerotic pathways for, 472f, 972 472

in gluconeogenesis, 571

in heme synthesis, 843, 869, 874–875, 875f

methylmalonyl-CoA conversion to, 571, 616, 779, 779f, 790, 798, 798f vitamin B12 in formation of, 790, 798, 798f

Sucrase, 25, 420t

Sucrase–isomaltase complex, 415, 419, 420f, 421 Sucrose, 5, 25, 369, 415, 418, 435, 435f

and dental caries, 451 digestion of, 415, 419–421

structure of, 415, 416fSucrose intolerance, 421 Suffixes, for clinical conditions, 375

Sugars. See also Carbohydrates; specific sugars absorption of, 425–428

glycoprotein/glycolipid synthesis from, 544, 554, 554t, 556f interconversion of, 543f, 544, 550–554, 555f

metabolism by colonic bacteria, 422 nucleic acid, 68, 69f, 213, 215, 215f, 223 number of carbons, 66

structure of, 62, 66–69 substituted, 67–68, 68f sulfated, 978, 985f, 986–987 Sulfa drugs, 792

Sulfate, active. See 3-Phosphoadenosine 5-phosphosulfate Sulfated compounds, hepatic synthesis of, 919t

Sulfated sugars, 978, 985f, 986–987 Sulfate groups, 64, 65f Sulfatides, 656

Sulfhydryl group, 64f, 65, 66f Sulfonylureas, 384, 848, 863 Sulfur

functional groups, 62 function of, 15–16

from homocysteine, 774–775, 799 partial charge of, 65

Sulfur-containing amino acids, 84f, 85t, 86, 86f Sulfuric acid, 47, 51, 51t, 55–56

Supercoil, DNA, 221 Superfamilies of proteins, 89 Superoxide, 75, 504 characteristics of, 506, 507t

defense against, 505, 514–516, 515f generation of, 504, 504f, 506, 506f, 507, 508f membrane attack/lipid peroxidation by, 509f organic radicals from, 507

in phagocytosis and inflammation, 513–514, 513f Superoxide dismutase (SOD), 505, 515, 515f Supporting cells, of nervous system, 953, 954–956 Suppression tests, 864

Suppressor of cytokine signaling (SOCS) proteins, 202, 882, 882f

Supravalvular aortic stenosis (SVAS), 983, 994t Surfactant, 651, 655, 659

Svedberg units (S), 224 Sweat, lactic acid in, 445

Sweat test, for cystic fibrosis, 320 Sweeteners, dietary, 418

Symports, 177, 496

Synapse, 955, 955f

neurotransmitter action at, 958–959, 959f Synaptic cleft, 192, 192f, 958, 959f Synaptic vesicles, 192, 192f

Syndrome X (metabolic syndrome), 30 Synergistic phosphorylation, 534

Synthases, 144, 146, 459. See also specific types Synthesis (S) phase of cell cycle, 230, 235–236, 236f Synthetases, 146, 459. See also specific types

Systemic lupus erythematosus (SLE), 252, 262, 269, 271t, 979, 990–991, 994tTT3

. See Triiodothyronine T4. See Tetraiodothyronine Tachycardia, 409

Takaki (Japanese surgeon), 474 Tandem repeats, 331, 331f Tangier disease, 681

Tardive dyskinesia, 966 Target cells, 190

Targeting sequences, 285–287 Tarui syndrome, 531t

TATA box, 255

TATA sequence, 255–257, 256f Tat protein, 362

Taurine

in bile salt conjugation, 676, 677f synthesis of, 919t Taurochenodeoxycholic acid, 676 Taurocholic acid, 676, 677f Tautomers, 74, 74f

Tay–Sachs disease, 179, 275, 287, 545, 559t, 561–562, 562f, 563t Tay–Sachs variant, 559t, 561

TCA cycle. See Tricarboxylic acid cycle T-cell(s), 871, 881f

T-cell leukemia, 362 Telomerase, 230, 239–240, 239f Telomeres, 230, 238–240, 239f Temperature

and DNA melting, 220

and enzyme action, 128, 139 and protein denaturation, 119

Template, DNA, 216–218, 218f, 230 Template strand, of DNA, 254, 254f Tendons, 978, 979, 982

Tertiary amines, 64

Tertiary structure of protein, 100, 100f, 102, 105–108 domains in, 100, 105–106, 106f

folds in, 100, 106–107, 106f

of transmembrane proteins, 107–108, 108f Testosterone, synthesis of, 691f, 693–694 Tetracycline, 275, 281, 289, 289t Tetrahydrobiopterin (FB4), 769, 772, 781 Tetrahydrofolate (FH4), 769, 772, 774, 774f, 790–796 methyl-trap hypothesis and, 790–791, 799

one-carbon groups of, 790, 790f, 793–796, 793f oxidation and reduction of, 793–794, 793f recipients of, 790, 790f, 794–796, 795f, 795t sources of, 790, 790f, 794, 794f, 795t

in purine synthesis, 806, 806f, 807f

relationship with vitamin B12 and SAM, 790–791, 798f, 799–801 structure of, 791, 792f

synthesis of, 790, 792

Tetraiodothyronine (T4), 395, 401, 409, 481, 856–860 calorigenic effects of, 859–860

half-life of, 858

physiologic effects of, 858–859on adipocytes, 859 on liver, 859

on muscle, 859 pancreas, 859

radioimmunoassay for, 865, 865f secretion of, 858, 859f structure of, 856f

synthesis of, 856–857, 857f Tetroses, 66

Thalassemia, 252, 884–885 discovery of, 252

gene therapy for, 340, 869 hemoglobin switching in, 869, 884–885

major, minor, and intermediate classifications of, 267 malaria resistance in, 884

mutations in, 252, 884 Thalassemia, α, 252, 884

Thalassemia, β, 252, 268, 271t, 275, 287, 290t, 870, 884–885, 887 gene therapy for, 340

hemoglobin levels in, 252, 256, 261, 268, 279 hemoglobin switching in, 884–885

ineffective erythropoiesis in, 884–885 intermedia, 252, 256, 267, 268

major, 267 minor, 267

mutations in, 252, 287, 288t, 884–885 in β-thalassemia trait, 267 classification by chain, 267 heterozygosity in, 268, 287, 884, 887 homozygosity in, 267, 287, 884 nonsense, 278, 279, 288t

point, 256, 261 splice-junction, 261, 288t, 884

precursor/stem cells in, 314, 870, 884–885 Thalassemia intermedia, 252, 256, 267, 268

Therapeutic proteins, recombinant production of, 319, 333–335 Thermal denaturation, 119

Thermic effect of food (TEF), 10 Thermodynamics, 396–398, 397t

first law of, 397t, 398, 403, 408–409 second law of, 397t

Thermogenesis, 403 adaptive, 403 definition of, 403 diet-induced, 8, 10

nonshivering, 494–496, 495f shivering, 403

thyroid hormone and, 859–860 Thermogenin (UCP1), 494–496, 495f, 859 Thermus aquaticus, 329

Thiamin

deficiency of, 14, 14t, 129, 143, 147t, 458, 474, 476t, 781, 787t dietary requirement (RDA), 14t

measuring levels of, 458, 546 in tricarboxylic acid cycle, 459

Thiamin pyrophosphate (TPP), 135–136, 135f, 139

in α-ketoglutarate dehydrogenase complex, 465deficiency of, 953 in neurotransmitter synthesis, 953

in pentose phosphate pathway, 544

in tricarboxylic acid cycle, 457, 458, 461, 465 Thiazolidinediones, 658, 698, 863

Thin filaments, 183 Thioester, 64f, 65, 66f

Thiokinase (acyl-CoA synthetase), 607, 610–611, 610f Thiolases, 146, 621

Thiolytic reaction, 613f, 614 Thioredoxin, 816, 816f

30S ribosomal subunit, 224

3-to-5 direction, in transcription, 251, 252 TC (lamivudine), 234, 268, 269

Threonine, 12, 84f, 85t, 86 deamination of, 755

degradation of, 770–771, 771f, 779–781, 779f, 780, 782 glycine synthesis from, 774, 774f

in nucleotides, 544 Threonine aldolase, 782 Threonine dehydratase, 782 Thrombin, 893, 897–903 antithrombin III and, 902–903

antithrombotic effects of, 902, 902f cleavage of fibrinogen by, 897, 898f clotting factor conversion by, 899f, 900 drugs inhibiting, 905–906

formation and activation of, 897–901 regulatory role of, 902

Thrombin inhibitors, direct, 905–906 Thrombocytes. See Platelet(s) Thrombocytopenia, heparin-induced, 905, 964 Thrombocytopenic purpura, 907t

familial thrombotic, 897 idiopathic, 896 thrombotic, 897

Thrombolytic therapy, 481, 498–499, 904 Thrombomodulin, 899t, 902–903, 902f Thromboresistance, of vascular endothelium, 903 Thrombosis, 893

Thrombotic thrombocytopenic purpura (TTP), 897 Thromboxane(s), 70, 194–195, 638–647 inactivation of, 645

structure of, 641, 642f synthesis of, 640–645, 642f, 644f Thromboxane A2, 897

fish-rich diet and, 645 functions of, 645t inhibition of, 643 structure of, 641

synthesis of, 640, 643, 644f

in thrombosis/platelet aggregation, 643, 647 Thromboxane A synthase, 643, 644f Thromboxane receptors, 646, 646t

Thrombus (blood clot), 843–844, 893, 897. See also Coagulation Thymidine kinase (TK), 816

Thymine, 73, 74f, 213, 215tdegradation pathway of, 817 in DNA, 215–218, 215f, 215t, 217f

pairing of, 216–218, 217f uracil vs., 223, 223f

Thymine phosphorylase, 815f, 816 Thyroglobulin, 856, 857f, 858 Thyroid-binding globulin (TBG), 858

Thyroid dysfunction. See Hyperthyroidism; Hypothyroidism

Thyroid hormone, 194, 843, 845, 846t, 856–860. See also specific types biochemistry of, 856–858

calorigenic effects of, 859–860 half-life of, 858

Соседние файлы в папке новая папка