Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
7
Добавлен:
18.12.2022
Размер:
4.15 Mб
Скачать

coupling in, 493–496

electrochemical potential gradient in, 480, 480f, 483, 483f electron transfer from NADH to O2 in, 482

ethanol and, 711 high-energy bonds in, 480 inhibition of, 489, 490t

NADH shuttle systems in, 488–489, 488f overview of, 482–484

oxidation–reduction reactions in, 484–486, 485f coenzyme Q in, 482, 485, 485f

copper and reduction of oxygen in, 485f, 486 cytochromes in, 482, 485–486, 485f

NADH:CoQ oxidoreductase in, 484, 485f

succinate dehydrogenase and other flavoproteins in, 484, 485f regulation of, 481, 494, 494f

sequential transfer in, 485f, 489 in thermogenesis, 494–496, 495f uncoupling in, 481, 493, 494–496 chemical uncouplers in, 494, 495f proton leak in, 481, 494, 496

uncoupling proteins in, 494–496, 495f

Oxidative phosphorylation (OXPHOS) diseases, 481, 490–493, 491t Oxidative stress, 505, 505f

Oxidized functional groups, 64, 64f Oxidized sugars, 68–69, 69f Oxidoreductases, 136–139, 144 Oxygen

antibonding electrons of, 506 as biradical, 504, 504f, 506 brain requirement for, 953

copper and reduction of, 485f, 486

electronegativity of, 65electron transfer from NADH to, 482 in fatty acid desaturation, 637–638

functional groups, 62 hepatic consumption of, 921 la

ck of (hypoxia), 410, 410f partial pressure (pO2), 48, 436

reactive oxygen species from, 504, 504f reduction potential of, 406, 407 singlet, 507t

spin restriction of, 506

Oxygenases, 144, 395, 407–408, 407f, 508 Oxygen binding

heme and, 110–111, 111f hemoglobin, 109–114, 111f agents affecting, 112–114, 113f

2,3-bisphosphoglycerate and, 113, 113f cooperativity of, 112, 112f, 123–124, 123f proton binding (Bohr effect) and, 113–114, 113f myoglobin, 109–111

Oxygen consumption, 408, 408f

Oxygen radicals, 504–505. See also Oxygen toxicity Oxygen saturation curve

for hemoglobin, 110, 110f, 112 for myoglobin, 110, 110f Oxygen toxicity, 504–511

cellular defenses against, 505, 514–519 antioxidant scavenging enzymes in, 515–516 compartmentalization in, 514, 515f

glutathione defense system in, 505, 515–516, 516f, 543, 548–549, 549f nonenzymatic antioxidants in, 516–519

damage from, 504, 504t, 509–511, 510f

disease states associated with, 504, 504t, 509, 522t DNA, 511

ethanol and, 702, 710–712, 711f

membrane attack/lipid peroxidation, 509–510, 509f, 510f protein and peptide, 511

in neurodegenerative disease, 504, 953 oxidative stress from, 505, 505f

in phagocytosis and inflammation, 513–514, 513f

radical reactions with cellular components in, 509–511, 509f ROS cellular sources in, 507–509

ROS characteristics in, 506–507, 507t ROS generation in, 504, 504f, 505–509 Oxypurinol, 818

PP

0 protein, 972, 974

p21 protein, 354, 355f

p53 protein, 354–355, 355f

p53 tumor-suppressor gene, 353–355, 361 Packaging of DNA, 221, 221f, 222f

Packaging of lipids. See Chylomicron(s); Micelles Palindromic sequences of DNA, 321–322

Palmitate, 6f, 72, 406 activation of, 637 metabolism of, 634

oxidation of, 609–610synthesis of, 631, 634, 636–637, 722, 723 Palmitic acid, 69, 614, 615, 638, 922

Palmitoleic acid, 70 Palmitoylation, 92, 93f

Palmitoyl coenzyme A (palmitoyl-CoA), 632–633, 636, 637, 640f, 656 Pancreas

endocrine, 381–382 exocrine, 419

glucagon synthesis and secretion by, 376, 381–382, 384–385, 847–848 insulin synthesis and secretion by, 26, 376, 380, 380f, 381–384, 383f, 848 thyroid hormone and, 859

zymogen synthesis and storage in, 740–741, 742 Pancreatic amylase, 595

α-amylase, 415, 418–419, 419f

Pancreatic enzymes, 25, 740–741. See also specific enzymes Pancreatic enzyme supplementation, 739, 745–746, 748t Pancreatic lipase, 594, 596–597, 597f

Pancreatic lipase inhibitor, 601 Pancreatic polypeptide (PP), 860 Pancreatitis, 419, 595, 597, 602, 604t Pantothenate, 463

Pantothenic acid coenzyme A from, 27 deficiency of, 14t

dietary requirement (RDA), 14t in tricarboxylic acid cycle, 459

Para-aminobenzoic acid (PABA), 791, 792, 792f Paracrine messengers, 190, 193, 194f Paralogs, 89, 90f

Parathion, 129f, 140 Parenteral feeding, 452

Parkinson disease, 504, 505, 508, 509, 519, 519f, 522t, 962 Partial charge, of functional group, 65, 65f

Partial fatty acid oxidation (pFOX) inhibitors, 939 Partial pressure of gases, 48, 436

Passive transport, 174–175, 175f, 176f Patched/Smoothened signaling system, 355, 356f, 362 PCBs (polychlorinated biphenyls), 75–76, 76f

PCDDs (polychlorinated dibenzo-p-dioxins), 76, 76f PCNA (proliferating cell nuclear antigen), 238, 238t PCR (polymerase chain reaction), 319, 329, 329f PDGF/Akt/BAD pathway, 360

Pear shape, 30

Pearson syndrome, 491t Pectins, 424–425, 424t

Pelizaeus-Merzbacher disease, 974 Pellagra, 14t, 746, 782

Pendred syndrome, 857 Pendrin, 857 Penicillin, 140, 141f

Pentane, from lipid peroxidation, 509 Pentanyl group, 63

Pentose phosphate pathway, 369, 370f, 371, 371f, 437, 543–550, 543f, 669, 920–921 detoxification in, 543

direction of, cellular needs dictating, 550t fatty acid synthesis in, 543, 543f, 548–550

glycolipid synthesis in, 544glycoprotein synthesis in, 544 nonoxidative phase of, 371f, 543–544, 543f, 546–548, 548f nucleotide synthesis in, 543, 543f

oxidative phase of, 371f, 543, 543f, 545–546, 545f, 548f and red blood cells, 548–549, 549f, 843, 849, 873f, 874 reversible reactions of, 546, 548

ribulose 5-phosphate conversion to glycolytic intermediates in, 546–547, 546f, 547f sequence of events in, balanced, 548, 548f

sugar interconversions in, 543f, 544 Pentoses, 66

Pepsin, 25, 738, 739–741, 739f, 740f, 741f Pepsinogen, 739, 740f

Peptide(s)

affecting fuel metabolism, 860–863, 861t radical damage to, 511

Peptide backbone, 100, 102–103, 102f

Peptide bonds, 80, 82–83, 83f, 274, 282f, 283 Peptide YY (PYY), 860

Peptidoglycan, 171

Peptidyl (P) site, on ribosome, 280–281, 280f Peptidyltransferase, 283

Perilipin(s), 650, 660

Perilipin 1 (PLIN1), 650 Peripheral nervous system (PNS) cells of, 953, 955, 956

lipid synthesis in, 970–972 myelin proteins in, 972

myelin sheaths in, 956, 971–972, 971f Peripheral neuropathy

in diabetes mellitus, 441, 844 sorbitol in, 441

Peripheral proteins, 171–172, 171f, 173f, 174 Peripheral tissues, fate of glucose in, 579–580

Perisinusoidal (stellate) cells, 713–714, 714f, 912–913, 928 Pernicious anemia, 797, 799, 803t

Peroxidases, 407, 508

Peroxidation, lipid, 509–510, 509f, 510f ethanol and, 711–712

vitamin E as defense against, 517, 517f Peroxisomal enzyme deficiencies, 620 Peroxisomal fatty acid oxidase, 508 Peroxisomal function disorders, 954 Peroxisomal oxidation, 607, 618–621, 923 α, 607, 620, 620f

β, 607, 618–620, 619f

of long-chain branched-chain fatty acids, 620, 620f regulation of, 621

of very-long-chain fatty acids, 618–620, 619f, 923

Peroxisome proliferator-activated receptor(s) (PPAR), 197, 923

Peroxisome proliferator-activated receptor-α (PPAR-α), 197, 657–658, 698, 923, 924t Peroxisome proliferator-activated receptor-γ (PPAR-γ), 197, 309, 698

Peroxisomes, 169, 181

Peroxynitrite, 507t, 512–513, 512f Peroxy radical, 507, 507t Pertussis toxin, 94

PEST sequences, 745

Peutz-Jeghers syndrome (PJS), 697pH blood, 53

buffers and, 47, 47f, 52–56

and enzyme action, 128, 139, 140f extracellular, 53–55

hemoglobin binding and, 113–114, 113f intracellular, 55

and lysosomal hydrolases, 179, 179f neutral, 51

and protein denaturation, 119, 739–740 urine, 55–56

water, 47, 50–51 Phagocytosis, 180

free-radical formation in, 513–514, 513f neutrophils in, 180, 871

Phase I reactions, in detoxification, 914, 914f Phase II reactions, in detoxification, 914, 914f Phen/fen, 973

Phenobarbital, 877 Phenoxybenzamine, 963, 973 Phentermine, 973 Phenylacetate, 762–763, 763f

Phenylalanine, 12, 84f, 85, 85f, 85t

conversion to tyrosine, 769, 770f, 771, 778, 781, 959, 960f degradation of, 771, 771f, 778, 781, 781f, 782f

disorders of, 772, 782, 783, 784, 785, 786t, 787t hydroxylation of, 781, 783f

Phenylalanine hydroxylase (PAH), 781, 782f, 783f, 784–785, 786t, 787t, 959 Phenylbutyrate, 762–763, 763f

Phenylethylamines, 962 Phenyl group, 63, 63f

Phenylketonuria (PKU), 772, 784, 785, 787t, 958 Pheochromocytoma, 853, 954, 961, 963, 964, 973, 975t Philadelphia chromosome, 295, 303, 313–314, 345, 349, 362 Phlorizin hydrolase, 421

Phosphatases, 179 Phosphate

in DNA, 215–218, 216f, 217f, 219f in nucleotides, 213

in tricarboxylic acid cycle, 459 Phosphate bonds

of ATP, 394, 396, 396f, 402–403 in tricarboxylic acid cycle, 459 Phosphate buffer, 47, 55–56 Phosphate groups, 64, 65f Phosphate ions, 55–56 Phosphatidic acid, 71, 72f

in glycerophospholipid synthesis, 632, 651–652, 652f in triacylglycerol synthesis, 632, 647–648, 647f Phosphatidylcholine, 71–72, 72f, 73, 953

in amniotic fluid, 659, 659f ceramide reaction with, 656, 657f in plasma membrane, 172, 172f synthesis of, 632, 652, 653f

Phosphatidylcholine supplementation, 966 Phosphatidylethanolamine, 172, 172f, 652, 653f

Phosphatidylglycerol, 652, 653fPhosphatidylinositol, 172–173, 172f, 200, 200f, 205, 632, 652, 653f

Phosphatidylinositol 4,5-bisphosphate (PIP2), 652, 653f

Phosphatidylinositol bisphosphate (PIP2)–Ca2+ signal transduction system, 536, 536f Phosphatidylinositol phosphates, 199–200, 200f

Phosphatidylserine, 172–173, 172f, 652, 653f Phosphoacylglycerols, 62, 71–72, 72f

3-Phosphoadenosine 5-phosphosulfate (PAPS), 656, 657f, 776, 987, 987f Phosphoanhydride bonds, 396, 396f

Phosphocholine, 633, 652, 653f Phosphodiesterase inhibitors, 207, 387, 388 Phosphodiester bonds, 213, 213f, 217f, 220, 223 cleavage of, 321, 321f

Phosphoenolpyruvate (PEP)

conversion to fructose 1,6-bisphosphonate, 574, 574f conversion to pyruvate, 439–440, 439f

enzyme activity states and, 575–577 in fasting state, 581

generation from gluconeogenic precursors, 573, 573f in gluconeogenesis, 572–577, 572f, 725f

in glycolysis, 439–440, 439f, 725f high-energy bonds of, 403f oxaloacetate conversion to, 573, 573f

pyruvate conversion to, 572–573, 572f, 575–577

Phosphoenolpyruvate carboxykinase (PEPCK), 308–309, 309f, 389, 573, 573f, 576–577, 577t, 724, 725f, 729t, 828

Phosphoester, 64f, 65, 66f Phosphofructokinase-1 (PFK-1), 721, 725f deficiency of, 531t

in glycolysis, 434–435, 434f, 438, 439f, 447, 449–450, 922 inhibition at citrate site, 450

isoenzyme subunits of, 449

in muscle metabolism, 942, 943f, 944, 947 regulation of, 448f, 449–450, 449f, 729t

Phosphofructokinase-2 (PFK-2), 449–450, 721, 729t, 922, 932, 938, 941 Phosphoglucomutase, 397, 398, 398f, 402, 528, 528f, 530 Phosphoglucomutase inhibition, 553, 554

6-Phosphogluconate, 551, 552, 721

3-Phosphoglycerate, 438–439, 439f

serine synthesis from, 772–773, 773f, 794, 968 3-Phosphoglycerate dehydrogenase, 773 3-Phosphoglycerate kinase, 438, 439f Phosphoglycerides. See Phosphoacylglycerols Phospholamban, 388

Phospholipase(s), 632, 654–656, 655f Phospholipase A1, 654–655, 655f

Phospholipase A2, 594, 597, 597f, 640, 642f, 655–656, 655f Phospholipase C, 640, 642f, 655–656, 655f

Phospholipase D, 655f, 656 Phospholipids, 27

in coagulation, 893 digestion of, 594

interconversion among, 652, 653f metabolism of, 651–656

in plasma membrane, 171f, 172–173, 172f types of, 651f

Phosphoribosyl pyrophosphate (PRPP), 806, 807f, 808–811, 813, 816 in gout, 818reaction with glutamine, 808, 808f

regulation of, 810–811, 810f synthesis of, 808, 808f

Phosphoribosyl pyrophosphate (PRPP) synthetase, 806, 808, 808f, 810–811, 810f Phosphoribosyltransferases, 806, 811, 812f

Phosphorus functional groups, 62 function of, 15

Phosphorus deficiency, 15

Phosphorylase kinase, 533–536, 534f, 724, 729t Phosphorylases. See also specific types deficiency of, 530

definition of, 529

Phosphorylation, 81, 93f, 94, 284–285, 434, 719, 729t AMP, 810

CREB, 308, 309, 309f, 387 enzyme, 150, 158–159, 158f glucose, 369, 382, 407, 407f

in glycogen metabolism, 533–534, 534f GMP, 810

hierarchical, 534

HMG-CoA reductase, 673–674, 674f

in initiation of translation, 311, 311f insulin and, 389

JAK–STAT receptors, 201–202, 202f oncogene, 349–350, 351f

oxidative, 5, 394, 403–407, 404f, 480–500, 480f (See also Oxidative phosphorylation) substrate-level

in glycolysis, 375, 434, 435f, 436, 438–440, 439f in tricarboxylic acid cycle, 461

synergistic, 534

tyrosine kinase receptor, 198–199, 199f Phosphorylation cascade, 159, 199, 533–534 Phosphorylation-gated channels, 175 Phosphorylcholine, 72f

Phosphoryl transfer reactions, 394, 400–401, 401t Phosphoserine phosphatase, 773

Photosynthesis, glucose production in, 586 Phylloquinone. See Vitamin K

Physical activity. See also Exercise energy expenditures in, 9–10, 9t hourly activity factors, 9t Phytanic acid, 607, 620, 620f Phytosterolemia, 669

PIAS (protein inhibitors of activated STAT), 202 Pioglitazone, 658, 863

Pit cells, hepatic, 913

Pituitary adenylate cyclase activating peptide (PACAP), 861t Pituitary macroadenoma, 849, 850, 851

pKa, 47, 128

Plants, glucose production by, 586 Plaquenil, 269

Plasma, 893

electrolyte composition of, 894 proteins of (See Plasma proteins) transport via, 893

Plasma cell(s), 895Plasma cell dyscrasia, 101, 114 Plasmalogens, 181, 632, 633f, 651, 652–654, 654f Plasma membrane, 169, 170–178, 170f

of bacteria, 171

cholesterol in, 171f, 173, 174f, 666 dynamic composition of, 173 glycocalyx of, 171f, 172, 174

lipid bilayer of, 169, 171–173, 171f permeability of, 50, 410, 410f phospholipids in, 171f, 172–173, 172f proteins in, 169, 171–174, 171f, 173f of red blood cells, 173f, 869, 879–880 structure of, 171–174, 171f

transport across, 169, 174–178, 175f via active transport, 169, 174, 175f via endocytosis, 174, 175f, 178

via facilitative diffusion, 169, 174, 175f, 176f via gated channels, 169, 174, 175–176, 175f hypoxia and, 410, 410f

via passive transport, 175f

via simple diffusion, 174–175, 175f, 176 via vesicular transport, 178

Plasma membrane receptors, 190–191, 190f, 195, 195f, 197–206 cellular effects of, 197

characteristics of, 197 major classes of, 197–198

signal transduction for, 190–191, 197–206, 385–388 Plasma proteins, 893–909

and body fluid maintenance, 894 drugs binding to, 894 functions of, 894

and hemostasis/coagulation, 895–904 hepatic synthesis of, 894, 895t, 918–919 and immune defense, 895

osmotic pressure exerted by, 893, 894, 919 protein malnutrition and, 894

Plasmids, 214–215

as cloning vectors, 327, 328f for constructing DNA library, 328 Plasmin, 903–904, 904f Plasminogen, 903–904, 904f

Plasminogen activator(s), 903–904, 904f

Plasminogen activator, tissue (TPA), 334, 481, 498–499, 687, 903–904, 904f Platelet(s), 869, 871, 896–897

activation of, 896–897, 896f adhesion of, 896, 896f

aggregation of, 643, 647, 843–844, 893, 896–897 decreased, in leukemia, 345

functions of, 870, 896 granules of, 896

in hemostasis (coagulation), 843–844, 893, 895–897 production of, 871, 881f, 896

secretions of, 896–897 thromboxane A2 and, 643, 647

Platelet-activating factor (PAF), 632, 651, 654 Platelet-derived growth factor (PDGF), 195, 896 in hepatic fibrosis, 928as oncogene, 350t Platelet inhibitors, 906

Plavix (clopidogrel), 906 Pneumonia, 214, 227t

antibiotics for, 275, 281, 282, 283, 287 Point mutations, 89, 277t, 278, 330

Pol I, 232–233, 233t

Pol II, 232–233, 233t

Pol III, 232–234, 233t Pol α, 236–238, 237t

Polar amino acids, 80, 83, 84f Polar bonds, 65, 66f

and reactivity, 65, 66f and solubility, 65, 66f Pol β, 237t

Pol δ, 236–238, 237t Pol ε, 236–238, 237t Pol η, 236, 237t Pol γ, 236, 237t Poliomyelitis, 284 Pol ι, 236, 237t Pol κ, 236, 237t

Polyadenylation, 260, 261f, 310 Polychlorinated biphenyls (PCBs), 75–76, 76f

Polychlorinated dibenzo-p-dioxins (PCDDs), 76, 76f Polycistronic transcript, 258, 296

Polydipsia, 379, 570

Polymerase chain reaction (PCR), 319, 329–331, 329f Polymorphisms, 80, 89, 319

caused by repetitive DNA, 331, 331f detection of, 319, 330–333

by allele-specific oligonucleotide probes, 330 by polymerase chain reaction, 330–331

in ethanol metabolism, 702, 706 markers for disease, 331

restriction fragment length (RFLPs), 330 single nucleotide (SNPs), 339–340 Polymorphonuclear leukocytes, 870–871 Polynucleotides, 213, 213f, 216, 217f Polyol, 68, 69f

Polyol pathway, 435, 435f, 441, 441f Polypeptide chains, 80, 82 elongation of, 274, 282–284, 282f Polypeptide hormones, 194, 308

Poly(ADP-ribose) polymerase 1 (PARP-1), 364 Polysaccharides, 5, 62, 69, 418

Polysomes, 274, 284, 284f

Poly(A) tail, of mRNA, 213, 224, 224f, 251, 259–261, 259f, 261f, 310, 310f Polyunsaturated fatty acids, 62, 69–70, 71f, 504, 609

dietary sources of, 638 eicosanoids from, 632, 638 Polyuria, 50, 379, 568, 570 Pol ζ, 236, 237t

Pompe disease, 179, 531t Pores. See Gated channels Porins, 180, 481, 497

Porphobilinogen, 875, 875f, 876fPorphyrias, 843, 869, 875f, 876, 890t Porphyrin, 874, 874f. See also Heme

Porphyrinogens, 875, 875f, 876 Portal hypertension, 918 Portal–systemic encephalopathy, 760

Portal vein, 27, 29, 910, 911, 911f, 913 Positional cloning, 331

Positive (basic) amino acids, 80, 84f, 85t, 86–88 Positive control, 294, 297

Positive cooperativity, 112, 112f Postabsorptive (basal) state, 35, 36f interorgan flux in amino acids in, 825–828, 826f Postprandial state, 35

amino acid metabolism in, 835, 835f

glucose levels in, 35, 56, 566, 568f, 578–584, 578f Poststreptococcal glomerulonephritis (PSGN), 933, 941, 948 Postsynaptic membrane, 192f

Posttranslational modifications, 81, 91–94, 93f, 182, 284–285, 285t Potassium

in action potential, 192–193, 193f distribution in body fluids, 49, 50t function of, 15

Potocytosis, 178

Prader-Willi syndrome, 302, 315t Pralidoxime, 143

Pramlintide, 847

Prealbumin, 835 Prediabetes, 56, 570

Prednisone, 295, 568, 571, 633 Prefixes, for clinical conditions, 375 Pregnancy

malnutrition in, and neonatal hypoglycemia, 526, 532, 538 prenatal testing in, 327

Pregnane X receptor (PXR), 197 Pregnenolone, 691f, 692, 855 Premature infants

oxygen toxicity in, 516 polypeptides in blood of, 743

respiratory distress syndrome in, 634, 655, 659, 663t Premature ventricular contractions, 505

Pre-mRNA, 224, 251, 259 Prenatal testing, 327 Prenylation, 92, 93f, 284 Preprocollagen, 982–983 Preprosomatostatin, 848 Pressure-gated channels, 175 Presynaptic membrane, 192, 192f Presynaptic terminal, 953 Primary active transport, 177 Primary amines, 64, 65f Primary oxaluria type 1, 787t

Primary structure of proteins, 80, 82, 100, 100f, 102 folding determined by, 117

polymorphisms in, 80, 89 species variations in, 91, 92f variations in, 80–81, 88–91

Primary transcript, 251Primase, 234, 238, 238t Primer, for DNA replication, 230, 234, 237–238 Priming the pump, in glycolysis, 437, 437f Prion diseases, 119–121, 125t

Prion proteins, 101, 119–121, 121f, 174 Probes, 323, 323f

allele-specific oligonucleotide, 330 la

bel for, 319, 323, 323f stringency of, 323

Procarboxypeptidases, 740–741, 740f Processivity, of DNA polymerase, 233, 238 Procollagen, 118, 979, 982–983

Product, enzyme, 128, 150

Product inhibition, simple, 155, 156 Proelastase, 740, 740f

Proenzymes, 161, 897 Progeria, 278 Progesterone

cholesterol conversion to, 690–692, 691f synthesis of, 694

Progestogens, synthesis of, 689–692, 690t, 693–694, 694 Proglucagon, 384, 847–848

Programmed cell death. See Apoptosis Prohormones, 376

Proinsulin, 376, 382, 382f Prokaryotes

cells of, 171, 185 DNA of, 214, 267

DNA synthesis in, 231–234 base-pairing errors in, 234

bidirectional replication in, 231, 232f DNA ligase in, 234, 235f

DNA polymerases in, 232–233, 233f, 233t DNA unwinding in, 232, 232f

eukaryotic vs., 234–235

at replication fork, 234, 235f

semiconservative replication in, 230f, 231, 232f eukaryotes vs., 171, 265–267, 267t

gene expression regulation in, 294, 296–300 attenuation of transcription in, 294, 300, 300f corepressors in, 297, 298f

inducers in, 297, 297f

operons in, 294, 296–300, 296f–298f repressors in, 294, 296–297, 297f

stimulation of RNA polymerase in, 298–299, 299f genome of, 223

promoters in, 255–256, 256f ribosomes of, 224, 225f

transcription in, 251, 253, 255–258, 256f, 258f, 294, 296–300 translation in, 281, 281f, 281t

Proliferating cell nuclear antigen (PCNA), 238, 238t Proline, 83–85, 84f, 85t, 103

in collagen, 979, 980f

degradation of, 771, 771f, 777–778, 777f synthesis of, 770f, 776, 777, 777f

Prolonged fasting (starvation), 34, 37–40, 39f, 39t adipose tissue in, 38–40anorexia nervosa and, 40–41 death vs. survival, 39–40

fuel usage during, 725t

glucose levels and metabolism in, 38, 39, 568f, 578, 579t, 583, 583f, 584, 584f ketone bodies in, 583, 623, 724–726

liver in, 38

protein synthesis in, 38

skeletal muscle metabolism in, 941–942 Prolyl 3-hydroxylase 1 (PH3-1), 993 Prometheus, 236, 237

Promoter(s), 251, 251f, 252–257, 255f, 294 eukaryotic, 255–257, 256f, 308–309, 309f for mRNA, 255–257, 256f

prokaryotic, 255–257, 256f for tRNA, 264, 264f

Promoter-proximal elements, 251, 253, 255, 256f, 294 Promoter region of gene, 254–257, 255, 255f, 256f Proofreading, DNA, DNA polymerases in, 238 Proopiomelanocortin (POMC), 965

Propionyl coenzyme A (propionyl-CoA), 571, 607, 616–617, 616f amino acid degradation to, 771f, 779–781, 779f, 780f conversion to methylmalonyl-CoA, 571, 616, 779, 779f Propionate, for gluconeogenesis, 571–572

Propionyl group, 63 Propranolol, 963, 973

Proprotein convertase subtilisin-like kexin type 9 (PCSK9), 689 Prostacyclin (PGI2), 195, 195f, 640, 643, 644t, 903 Prostaglandin(s), 70, 194–195, 638–647

functions of, 644t inactivation of, 645 inhibition of, 644–645 measuring levels of, 641 nomenclature for, 640 structures of, 640, 642f, 643f

synthesis of, 638, 640–645, 642f, 644f Prostaglandin analogs, 647 Prostaglandin E2, 640

Prostaglandin I2 (prostacyclin), 195, 195f, 640, 643, 644t, 903 Prostaglandin receptors, 646, 646t

Prostaglandin synthases, 643, 644f Prosthetic groups, 110, 135 Protease(s), 161, 738

in coagulation, 161, 895, 897–904, 898f ly

sosomal, 179, 738

MMPs, 743t, 928, 978, 990

in protein digestion, 25, 179, 738, 739–741, 739f, 740f, 741f in protein turnover, 743, 743t

Protease inhibitors (PIs), 268, 269, 895, 903 Proteasome, 743t, 745, 745f

Protein(s), 6. See also specific types adhesion, 844, 978, 989–990

binding sites of, 83, 100, 101, 102 as buffer, 55

conformation of, 101–102, 105, 116–121 databases of, 95–96

degradation of, 738, 743–745 (See also Protein turnover)developmental variations in,

Соседние файлы в папке новая папка