Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
7
Добавлен:
18.12.2022
Размер:
4.15 Mб
Скачать

89–90

disease-causing malfunction of, 45 DNA-binding, 102

electrophoresis of, 88, 90 families and superfamilies of, 89

flexibility and rigidity of, 100, 102, 105, 116 functions of, 80

general structure of, 6, 6f, 101–102 guidelines on, 17

homologous, 89

isoforms or isozymes of, 81, 89 membrane, 169, 171–174, 171f, 173f paralogs of, 89, 90f

peptide backbone of, 100, 102–103, 102f

peptide bonds of, 80, 82–83, 83f, 274, 282f, 283 posttranslational modifications of, 284–285, 285t primary structure of, 80, 82, 100, 100f, 102 folding determined by, 117

genetic code and, 80 polymorphisms in, 80, 89 species variations in, 91, 92f variations in, 80–81, 88–91 processing of, 284

quaternary structure of, 100–101, 100f, 102, 108–109 radical damage to, 511

secondary structure of, 100, 100f, 102, 103–105 α-helices of, 100, 103, 103f

β-sheets of, 100, 103–104, 104f motifs of, 105

nonrepetitive, 104, 104f patterns of, 105 stability of, 101, 109

structural, 8, 844, 972, 978 structure–function relationships in, 100–124 immunoglobulins, 114–116

myoglobin and hemoglobin, 109–114 subunits of, 100, 108–109

synthesis of (See Protein synthesis) targeting of, 274, 285–287, 285f, 286f tertiary structure of, 100, 100f, 102, 105–108 domains in, 100, 105–106, 106f

folds in, 100, 106–107, 106f

of transmembrane proteins, 107–108, 108f therapeutic, production of, 319, 333–335 three-dimensional structure of, 101–102 tissue-specific variations in, 89–91 transporter, 175–178, 176f, 177f Protein, dietary

absorption of (amino acid), 25, 738, 741–742

amino acid metabolism after high-protein meal, 835–836, 835f calories/energy yield from, 5t

digestion of, 6, 24, 25, 26f, 738–741, 739f enzymes from intestinal cells in, 741 pancreatic enzymes in, 740–741

proteases in, 25, 738, 739–741, 739f, 740f, 741f in stomach, 738, 739–740, 739f

zymogen activation in, 740, 740fessential amino acids in, 3, 11, 12 fasting state, 34, 36, 37, 38–40

fatty acid synthesis from, 634 fed state, 24, 24f

fuel stores from, 7t, 8 guidelines on, 17

nitrogen balance of, 12–13, 12t requirements for, 12–13 Protein, fibrous, 101, 102

bonding in, 109

collagen family of, 117–118, 979–983 Protein, globular, 100, 102, 105 bonding in, 108–109

folds in, 106–107 solubility of, 107 subunits of, 108–109 Protein, transmembrane, 102 collagen as, 980, 982

tertiary structure of, 107–108, 108f Protein alphabet, 275

Protein C, 897, 899t, 902, 902f, 903 Protein C deficiency, 902

Protein denaturation, 101, 117, 119–121 gastric, 739–740

nonenzymatic modification in, 119, 120f pH and, 119, 739–740

refolding after, 117 solvent and, 119 temperature and, 119

Protein disulfide isomerase, 117, 602 Protein-energy malnutrition (PEM), 10, 13, 35 Protein folding, 83, 100–101, 116–121, 274 cis-trans isomerase in, 117

heat-shock proteins in, 117, 117f kinetic barriers in, 117 misfolding in, 119–121

primary structure and, 117

protein disulfide isomerase in, 117

Protein kinase(s), 150, 158–159, 158f. See also specific types dedicated, 159

Protein kinase A, 159, 308 adrenergic receptors and, 388

cAMP on, 159, 159f, 164, 205, 308, 377, 387 in glycogen metabolism, 533–536, 534f, 724 insulin and, 389

in lipolysis, 649–651, 650f, 724

Protein kinase B (Akt), 201, 201f, 360, 539, 730, 744f Protein kinase C, 143, 536, 536f

Protein malnutrition, 423, 583, 739, 740, 745–746, 748t, 835, 894 Protein phosphatase(s), 158, 158f, 535

Protein phosphatase 1 (PP-1), 535 Protein phospholamban (PLN), 948–949 Protein–protein interactions, 150 Protein S, 897, 899t, 902, 902f Protein S deficiency, 902

Protein sparing, 34

Protein synthesis, 29, 91, 211, 211f, 274–284amino acid pool from, 824, 825f antibiotics inhibiting, 225, 226, 281, 283, 287–289, 289t

elongation in, 274, 279, 282–284, 282f, 283f hepatic, 38, 894, 895t, 918–919

induction of, 197

initiation of, 274, 279–281, 280f insulin and, 389

mutation effects on, 277–278

peptide bond formation in, 274, 282f, 283 prokaryotic, 281, 281f, 281t

reading frame in, 274, 277, 277f ribosomes in, 169, 274, 279–281, 280f

on rough endoplasmic reticulum, 274, 285–287, 285f termination of, 274, 279, 283–284

translation in, 278–284 (See also Translation) translocation in, 274, 282f, 283 trauma/sepsis and, 837–838

tRNA in, 225, 263, 274–284

Protein turnover, 29, 37, 119, 738, 743–746 free amino acid pool from, 824, 825f half-life and, 743

ly

sosomal, 738, 744

proteases involved in, 743, 743t ubiquitin–proteasome pathway of, 738, 745, 745f Proteoglycans, 62, 68–69

aggregate of, 987, 988f

“bottle brush” appearance of, 987, 988f degradation of, 978, 988, 990–991, 991f

in extracellular matrix, 978, 978f, 984–988 functions of, 986, 986t

in hepatic fibrosis, 927–928 hydrated gel of, 986

as molecular sieves, 986 secretion of, 986

structure of, 978, 985f, 986–987, 988f

synthesis of, 371, 372f, 919–920, 978, 986–987, 987f, 990, 991f Proteolipid protein, 972, 974

Proteolysis, 37, 150, 161 in apoptosis, 357, 357f in digestion, 738, 739–741

Proteolytic enzymes. See Protease(s) Proteome, 319

Proteomics, 337–338, 338f, 362 Proteus syndrome, 355 Prothrombin, 897, 898, 900 Protomer, 108

Proton(s), 50

acids as donors of, 50 bases as acceptors of, 50

hemoglobin binding of, 113–114, 113f, 870

pumping, in electron-chain transport, 480–481, 486–487, 487f Proton-coupled folate transporter (PCFT), 793

Proton ionophores, 494, 495f

Proton leaking, in ETC–ATP uncoupling, 481, 494, 496 Proton motive force, 483, 483f

Proton wire, 487

Proto-oncogenes, 212, 344, 346, 350tamplification of, 347–348 gain-of-function mutations in, 347–348, 348f, 349

and signal transduction, 349–351 transposition or translocation of, 347, 348f Proto-oncoproteins, 350

Protoporphyrin IX, 875, 875f Proximal histidine, 111, 111f Proximity, in catalysis, 136 Prozac, 954, 973

Pseudomonas aeruginosa, in cystic fibrosis, 320, 739 P site, on ribosome, 280–281, 280f

PstI restriction enzyme, 321t PubMed, 95–96

Purine(s) (purine bases), 29, 62, 73, 74f, 806–811 degradation of, 807, 817, 818, 818f

dietary uptake of, 807

in DNA, 213, 215–218, 215f one-carbon-unit transfer to, 790, 790f ring structure of, 790

in RNA, 223, 223f

synthesis of, 806–811, 807f, 919t AMP and GMP phosphorylation in, 810 AMP synthesis in, 808–809, 809f

in brain, 807, 811

de novo pathway of, 806, 807–811, 807f disorders of, 806, 811

drugs blocking, 819

glycine incorporation in, 808, 809f GMP synthesis in, 809, 810f

IMP synthesis in, 808 in liver, 807, 811

precursors of, 806, 806f, 807f PRPP–glutamine reaction in, 808, 808f PRPP synthesis in, 808, 808f regulation of, 806, 810–811, 810f

salvage pathways of, 806, 807, 811, 812f Purine nucleoside phosphorylase, 806, 811, 812f

Purine nucleoside phosphorylase deficiency, 806, 820t Purine nucleotide cycle, 806, 811, 813f, 830–832, 832f, 947 Pyrazinamide, 268

Pyridines, 62, 73, 74f

Pyridoxal phosphate (PLP), 136, 137f, 764, 764f as coenzyme in amino acid metabolism, 769, 772 in deamination reactions, 755

deficiency of, 953

in glycine metabolism, 774, 774f in heme synthesis, 874–875

in neurotransmitter synthesis, 953

in transamination reactions, 144, 145f, 753, 753f, 764, 765f, 769 Pyridoxine. See Vitamin B6

Pyrimidine(s) (pyrimidine bases), 29, 62, 73, 74f, 806–807, 813–817 degradation of, 807, 817

dietary uptake of, 807

in DNA, 213, 215–218, 215f in RNA, 223, 223f

synthesis of, 806, 813–816, 919t

carbamoyl phosphate in, 759, 806, 813, 814fde novo pathway of, 806, 813, 814f, 816 disorders of, 816

drugs blocking, 819

origin of atoms for ring, 813, 814f regulation of, 816

salvage pathway of, 806, 813–816, 815f, 816t UMP formation in, 813, 815f

Pyrimidine nucleoside phosphorylase, 813–816, 815f Pyruvate, 27–28, 375, 375f

alanine from, 756, 776

amino acid degradation to, 770–771, 771f carbon dioxide addition to, 472, 472f

conversion to oxaloacetate, 572–573, 572f, 573f, 721 conversion to PEP, 572–573, 572f, 575–577

enzyme activity states and, 575–577 in fasting state, 581

in fatty acid synthesis, 435, 437, 446, 635, 635f, 721 generation in glycolysis, 434, 435, 437 (See also Glycolysis) in gluconeogenesis, 570–577, 571f

la

ctate oxidation to, 445, 571, 571f oxidation in TCA cycle, 435, 445, 469–471 oxidative fate of, 443–444, 443f

PDC kinase inhibition by, 470 PEP conversion to, 439–440, 439f transport of, 181, 182

Pyruvate carboxylase, 721 active, 576

deficiency of, 472, 476t

in gluconeogenesis, 572–573, 572f, 576 regulation of, 575–576, 577t, 729t

in tricarboxylic acid cycle, 458, 472

Pyruvate dehydrogenase (PDH), 434, 437, 448f, 464f, 719, 721, 729t in acetylcholine metabolism, 966

in cardiac muscle, 939

compartmentation and, 474–475 deficiency of, 621, 966

in fatty acid synthesis, 635 in gluconeogenesis, 575–576 inactive, 572f, 575–576

in pyruvate conversion to PEP, 572f, 575–576 in skeletal muscle, 941, 944, 947

structure of, 470, 470f

Pyruvate dehydrogenase complex (PDC), 457, 464, 469–471 deficiency of, 470, 476t

glycolysis–TCA cycle link via, 457, 469, 471 regulation of, 470–471, 471f

Pyruvate dehydrogenase kinase, 470, 471f Pyruvate dehydrogenase phosphatase, 470, 471f Pyruvate kinase, 450, 577, 577t, 721, 725f, 729t Pyruvate kinase deficiency, 872, 890t

Pyruvic acid, 51t QQ

cycle, 486–487, 487f Quaternary amines, 64, 64f, 65f

Quaternary structure of proteins, 100–101, 100f, 102, 108–109 Quinolones, 233RRa

diation

carcinogenic, 240, 344, 346, 347, 348f DNA damage from, 240, 241f, 246, 346, 347 Radicals, 504–521

cellular defenses against, 505, 514–519 antioxidant scavenging enzymes in, 515–516 compartmentalization in, 514, 515f

glutathione defense system in, 505, 515–516, 516f, 543, 548–549, 549f nonenzymatic antioxidants in, 516–519

damage from, 504, 504t, 509–511, 510f

disease states associated with, 504, 504t, 509, 522t DNA, 511

ethanol and, 702, 710–712, 711f

membrane attack/lipid peroxidation, 509–510, 509f, 510f protein and peptide, 511

definition of, 74, 504, 506 formation of, 504, 504f free, 74–75, 506, 702

generation of, 504, 504f, 505–509, 511–513, 920–921 ionizing radiation and, 509

in neurodegenerative disease, 504, 953 organic, 507, 507t

in Parkinson disease, 519, 519f

in phagocytosis and inflammation, 513–514, 513f reactions with cellular components, 509–511, 509f reactivity of, 506

Radioimmunoassays (RIAs), 116, 864–865, 865f Raffinose, 422f

Raf protein, 199, 349–350, 882 Rales, inspiratory, 409 Rapoport-Luebering shunt, 873

Ras–mitogen-activated protein (MAP) kinase pathway, 198–199, 199f, 882 Ras proteins

oncogenic, 349–350, 355, 360–361 superfamily of, 161, 190 tumor-suppressor genes and, 355 Rate-limiting enzyme, 150, 150f, 162–163

Rate-limiting step, 150, 150f, 151, 162–163, 162f Rate nephelometry, 740

Rb (retinoblastoma) gene, 353–354, 354f R-binders, 797, 797f

Rb (retinoblastoma) protein, 352, 352f, 354 R-CHOP chemotherapy, 295, 313, 819

Reactive nitrogen–oxygen species (RNOS), 505, 507, 511–513 characteristics of, 507, 507t

generation of, 505, 507, 511, 512–513, 512f in hepatic fibrosis, 714, 714f

oxidative stress from, 505, 505f

in Parkinson disease, 508, 519, 519f

in phagocytosis and inflammation, 513–514, 513f toxicity of, 512–513

Reactive oxygen species (ROS), 504–511 cellular defenses against, 505, 514–519

glutathione defense system in, 505, 515–516, 516f, 543, 558–559, 559f characteristics of, 506–507, 507t

damage from, 504, 504t, 509–511, 510fdisease states associated with, 504, 504t, 509, 522t

DNA, 511

ethanol and, 702, 710–712, 711f in hepatic fibrosis, 714, 714f

membrane attack/lipid peroxidation, 509–510, 509f, 510f protein and peptide, 511

generation of, 504, 504f, 505–509 major cellular sources of, 507–509 oxidative stress from, 505, 505f

in phagocytosis and inflammation, 513–514, 513f Reactivity, bond polarity and, 65, 66f

Reading frame, 274, 277, 277f Reannealing, DNA, 220

Receiving center, liver as, 913–914

Receptor(s), 190–191, 190f. See also specific receptors downregulation of, 206, 389

heptahelical, 190, 198, 198f, 203–205 intracellular, 190, 190f, 195–197, 195f, 388–389 kinase-binding, 197, 198, 198f

as kinases, 197, 198, 198f, 308 nuclear, 304

plasma membrane, 190–191, 190f, 195, 195f, 197–206, 385–388 specificity of, 191, 387

steroid hormone/thyroid hormone superfamily of, 196–197, 196f, 305–306, 305f, 306f tumor-suppressor genes and, 355

Receptor-mediated transcytosis, 958 Receptor-mediator endocytosis, 178, 179–180

of cholesterol/lipoproteins, 178, 684–685, 684f of iron, 876

Receptor-specific Smad protein (R-Smad), 202f, 203 Recombinant DNA, 320, 322

Recombinant DNA technology, 211, 319–341 clinical applications of, 319

detecting specific DNA sequences in, 324, 324f, 325f for disease diagnosis, 319, 330–333

for disease prevention and treatment, 319, 333–337 DNA sequencing in, 319, 324–327

gel electrophoresis in, 319, 323, 324f genetic counseling in, 335 identifying DNA sequences in, 323–327 insulin production in, 91

obtaining DNA fragments and gene copies for, 321–322 restriction enzymes in, 319, 321–322, 321f, 321t, 322f reverse transcriptase in, 322

techniques in, 319, 320–330

therapeutic proteins produced in, 319, 333–335 vaccines from, 319, 333, 338

Recombination, 211, 230, 243–245. See also Recombinant DNA technology crossing over in, 243

gene expression regulation in, 301, 302–303, 303f general or homologous, 244, 244f

translocation in, 243, 244, 244f, 303

transposons in, 243, 245, 245f

Recommended Dietary Allowance (RDA), 11, 19 for carbohydrates, 11

for protein, 12

for vitamins, 13, 14t–15tRecycling bile salt, 598, 598f, 676–678 glucose, 586, 586f

liver as center of, 913–914

protein, 29, 37, 119, 738, 743–745, 743–746 triacylglycerol, 598, 599f, 650–651 Recycling endosomes, 179

Red blood cells. See Erythrocyte(s) Red muscle fibers, 449, 933–934

Redox reactions. See Oxidation–reduction reactions Reduced functional groups, 64, 64f

Reduced sugars, 68–69, 69f Reducing sugar test, 75

Reduction, 64, 404–407. See also Oxidation–reduction reactions Reduction potential (E0),394, 405–406, 406t

Redux (dexfenfluramine hydrochloride), 954, 965, 973 Refetoff disorder, 860

Refsum disease, 954

Regulatory (rate-limiting) enzyme, 150, 150f, 162–163 Regulatory modifications, of amino acids, 93f, 94 Regulatory proteins, isozymes of, 163

Release factors, 274 Renal failure, 941, 949t

Renal (kidney) stones, 81, 87, 739, 774, 776 Renaturation, DNA, 220

Repair, DNA. See DNA repair

Repetitive DNA sequences, 265–267, 266f, 331, 331f Replication, DNA, 211–212, 211f, 230–240, 230f base pairing in, 216–218, 233–234

DNA template in, 216–218, 218f, 230, 230f errors or damage in, 212, 230, 234, 240 in eukaryotes, 234–240

DNA polymerases in, 236, 237t, 238t at ends of chromosomes, 238–240, 239f origin of replication in, 236, 237f prokaryotic vs., 234–235

proteins in, 237–238, 238t replication complex in, 237–238, 237f initiation of, 230

origin of, 231, 232f, 236, 237f primer for, 230, 234

in prokaryotes, 231–234 base-pairing errors in, 234 bidirectional, 231, 232f DNA ligase in, 234, 235f

DNA polymerases in, 232–233, 232–234, 233f, 233t DNA unwinding in, 232, 232f

at replication fork, 234, 235f semiconservative, 230f, 231, 232f in S phase of cell cycle, 230 Replication, RNA, 223–224

Replication complex, eukaryotic, 237–238, 237f Replication fork, 230, 230f

in eukaryotes, 237–238, 237f

in prokaryotes, 231, 232f, 234, 235f Repression, 161, 297, 719, 729tRepressor(s), 256 in eukaryotic gene expression, 304–305

in prokaryotic gene expression, 294, 296–297, 297f Repressor protein, 297

Research Collaboratory for Structural Bioinformatics (RCSB) database, 96 Reserpine, 959

Residual body, 180

Resistance to antibiotics, 288–289 Resistance training, 948 Resonance structures, 102, 102f Respiration, 4–5, 4f

Respiratory burst, 513, 513f

Respiratory distress syndrome (RDS), newborn, 634, 655, 659, 663t Respiratory quotient (RQ), 9

Response elements, 294

Resting energy expenditure (REE), 8, 408 Resting metabolic rate (RMR), 8, 408, 496 Restriction endonucleases, 321–322

Restriction enzymes, 319, 321–322, 321f, 321t, 322f Restriction fragment length polymorphisms (RFLPs), 330 Reticulocytes, 311, 870, 883, 883f

Retinoblastoma familial, 354, 354f, 361 sporadic, 354, 354f

Retinoblastoma (Rb) gene, 353–354, 354f Retinoblastoma (Rb) protein, 352, 352f, 354 Retinoic acid, 196, 196f

9-cis-retinoic acid receptor (RXR), 197 Retinoid(s), 190, 194, 196, 196f Retinoid receptor, as oncogene, 350t Retinoid X receptor (RXR), 306, 306f Retinol-binding protein, 895t

Retrograde messenger, nitric oxide as, 968, 968f Retroposons, 245

Retroviruses, 226, 245, 269, 270f and cancer, 362

as cloning vectors, 327

as gene therapy vectors, 336–337, 336f Reverse cholesterol transport, 681–682, 682f

Reverse transcriptase, 226, 245, 245f, 269, 270f, 322 Reversible inhibition of enzymes, 150, 154–155

Reye syndrome, 924, 929t

RFLPs (restriction fragment length polymorphisms), 330 Rh(D) antigen, 544, 545, 561

Rh blood group, 561 Rheumatoid arthritis, 986 Riboflavin

deficiency of, 14t, 461, 474 dietary requirement (RDA), 14t dietary supplements of, 608, 613 in tricarboxylic acid cycle, 459 Ribonucleases, 224

Ribonucleic acid. See RNA Ribonucleotide(s) degradation of, 807 synthesis of, 806

Ribonucleotide reductase, 806, 807f, 816–817, 817tRibose, 213, 223 in purine synthesis, 808, 808f

reduction to deoxyribose, 806, 816–817, 816f Ribose 5-phosphate, 543–544, 543f, 545–546, 550t generation from glycolytic intermediates, 548, 548f PRPP synthesis from, 808, 808f

in purine synthesis, 806, 806f, 807f, 808 in pyrimidine synthesis, 806, 813, 814f Ribosomal RNA (rRNA), 181, 211, 213

base pairing in, 213, 225 structure of, 224–225 synthesis of

in bacteria, 251, 258, 258f

in eukaryotes, 251, 261–263, 263f Ribosome(s), 169, 213, 224–225

cytosolic, 274 free, 170f mitochondrial, 224

nuclear pores and, 181

polysome formation by, 274, 284, 284f prokaryotic vs. eukaryotic, 224, 225f protein synthesis in, 169, 274, 279–284 protein targeting from, 285–287, 285f on rough endoplasmic reticulum, 182, 274 sedimentation coefficients of, 224 subunits of, 224

translation on, 274–284, 279f

tRNA bindings sites of, 280–281, 280f Ribosome assembly, 181 Ribothymidine, 225

Ribozyme, 224

Ribulose 5-phosphate, 543–544, 543f, 545–546, 545f conversion to glycolytic intermediates, 546–547, 546f, 547f epimerized and isomerized, 546, 546f

Rickets, 15t, 695

Rifampin, 260, 268 Ring structure

of aromatic amino acids, 85–86, 85f of benzene, 63, 63f, 73

chlorinated, as environmental toxins, 75–76 of cholesterol, 669, 670f

of heme, 110, 111f, 874, 874f heterocyclic, 62, 73

of monosaccharides, 67, 68f

of nitrogen-containing compounds, 62, 73–74 of prostaglandins, 640, 643f

of pyrimidines, 813, 814f tautomers, 74

of thromboxanes, 641, 642f of vitamin B12, 796–797, 796f of xenobiotics, 914 Rituximab, 295

RNA. See also Messenger RNA; Ribosomal RNA; Transfer RNA alkali effects on, 220, 220f

bases and nucleotides of, 213, 223, 223f degradation of bases, 807, 817, 818, 818f

synthesis of bases, 806–816enzymatic/catalytic action of, 224 general features of, 223–224

information flow to (central dogma), 226 microRNAs (miRNAs), 225, 312–313, 312f, 335 and apoptosis, 360

in follicular lymphoma, 313

and neural tube defects, 802–803 as oncogenes, 349

phosphodiester bonds of, 213, 213f posttranscriptional processing of, 294, 310–313 replication of, 223–224

single strand of, 213, 223, 251 small interfering (siRNA), 319, 335 structure of, 213, 223–225

sugar of, 213, 223

synthesis of, 211, 251–271 (See also Transcription) types of, 223–224

RNA editing, 311, 311f

RNA-induced silencing complex (RISC), 312–313, 312f RNA polymerase(s), 251, 252–257

action of, 252–253, 253f DNA damage and, 243

eukaryotic, 251, 253, 254t, 259

gene expression regulation by, 294, 296–300

gene recognition by, 254–255

prokaryotic (bacterial), 234, 251, 253, 257–258, 258f, 296–300 repressors of, 256, 294, 296–297

sigma (σ) factors and, 253, 257–258, 299–300 stimulation of binding, 298–299, 299f

types of, 253–257

RNA polymerase I, 253, 254t

RNA polymerase II, 253, 254t, 257

RNA polymerase III, 253, 254t, 262, 263–264

RNA primer, for DNA replication, 230, 234, 237–238 RNase H, 234, 238, 238t

RNase P, 258, 264

RNA-SEQ, 332, 362 RNA transcript, 251 RNA viruses, 215 cancer-causing, 362

Rough endoplasmic reticulum, 170f, 181, 182, 182f chylomicron assembly in, 599, 602–603

collagen synthesis in, 982–983, 983t elastin synthesis in, 983

glucagon synthesis on, 384 insulin synthesis on, 382 lipoproteins on, 599

protein synthesis on, 274, 285–287, 285f rRNA. See Ribosomal RNA

RSK protein kinase, 360 Ruminants, gluconeogenesis in, 571 Ryanodine receptors, 935–936, 936f SS

-Adenosylhomocysteine (SAH), 779, 779f, 799, 966 S-Adenosylhomocysteine (SAH) hydrolase, 819

S-Adenosylmethionine (SAM), 779, 779f, 790–791, 799–801in choline synthesis, 966 in creatine synthesis, 940f, 941

in epinephrine synthesis, 961

relationship with tetrahydrofolate and vitamin B12, 790–791, 798f, 799–801 stabilized version of (SAMe), 800

synthesis of, 779, 790, 799 Salicylate

metabolism of, 924, 924f overdose of, 48, 52, 57, 58t, 496 Salicylurate, 924

Salivary amylase, 595

α-amylase, 25, 415, 418–419, 419f Salivary mucin, 556, 556f Salvage pathway

of purine synthesis, 806, 807, 811, 812f of pyrimidine synthesis, 806, 813–816, 815f Sandhoff activator disease, 561

Sandhoff disease, 559t, 561

Sandwich technique, in immunoassays, 865, 933 Sanger, Frederick, 324

Sanger method of DNA sequencing, 324–326, 325f Sarcolemma, 934

Sarcoplasmic reticulum, 934, 935–936, 936f

Sarcoplasmic reticulum Ca2+ ATPase (SERCA), 936, 937f, 948–949 Sarin, 129f, 140

Satiety signals, 660

Saturated fatty acids, 17, 69, 71f, 609 oxidation of, 614

Saturation kinetics of enzymes, 150, 152

of transporter proteins, 175, 176f Saxagliptin, 863

Scavenger receptors, 687 Schilling test, 791

Соседние файлы в папке новая папка