Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
7
Добавлен:
18.12.2022
Размер:
4.15 Mб
Скачать

Mitochondrial integrity pathway, to apoptosis, 358, 358f, 499 Mitochondrial mRNA, 277

Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS), 491t

Mitochondrial permeability transition pore, 410f, 481, 497–498, 498f Mitochondrial ribosomes, 224

Mitochondrial trifunctional protein, 611t, 626 Mitochondrial trifunctional protein deficiency, 626, 628t Mitogen-activated protein (MAP) kinase, 198–199, 199f, 816 oncogenic, 349–350, 351f

Mitogen-activated protein kinase kinase kinase (MAPKKK), 199 Mitosis, 214, 221Mitotic (M) phase of cell cycle, 230, 236, 236f Mixed triacylglycerols, 71

Moclobemide, 963

Moderately repetitive DNA, 266–267, 266f Modified amino acids, 81, 91–94, 274, 284–285 Modulator protein, 150, 160

MODY, maturity-onset, 153 Molecular biology, 211–212 of cancer, 344–365 ethical dilemmas in, 212

Moles (nevi), 346. See also Melanoma Molybdenum, 15

2-Monoacylglycerol, 594 Monoacylglycerols, 25–26, 70–71 Monoamine oxidase, 508, 965

Monoamine oxidase (MAO), 962, 962f, 963 Monoamine oxidase inhibitors, 508, 519, 963 tyramine poisoning with, 963, 975t Monocytes, 870t, 871

Monomeric G-proteins, 150, 160–161, 161f Mononuclear leukocytes, 871 Monooxygenases, 407f, 408 Monosaccharides, 5, 24, 25, 66, 66f oxidized and reduced, 68–69, 69f

ring structures of, 67, 68f stereoisomers of, 66–67 structure of, 66–69

Monounsaturated fatty acids, 69–70, 71f, 609 Motifs, 105

Motif ten element (MTE), 255 Motilin, 860

Motor proteins, 183, 399 Motrin (ibuprofen), 645

M phase of cell cycle, 230, 236, 236f M protein, 114

mRNA. See Messenger RNA

MspI restriction enzyme, 321t

MstII restriction enzyme, 321t, 322, 330, 335

mTOR (mammalian target of rapamycin), 730, 731f, 744, 744f, 837–838 Mucilages, 424, 424t

Mucin, salivary, 556, 556f Mucopolysaccharides. See Glycosaminoglycans

Mucopolysaccharidoses, 954, 978, 986, 988, 989t, 994t Multimer, 108

Multiple endocrine neoplasia (MEN), 361 Multiple endocrine neoplasia (MEN) type 1, 728 Multiple sclerosis, 334, 973–974, 975t Multisubstrate reactions, 154

Muscarinic acetylcholine receptors, 193, 203 Muscle, 844, 932–949. See also specific types Muscle cells, 932–935

cardiac, 934f, 935

skeletal muscle, 933–934, 934f smooth muscle, 934–935, 934f

Muscle contraction, 935–936

energy (ATP) for, 399, 399f, 936, 937f

sliding filament system in, 932, 936, 937fsmooth muscle, eicosanoids in, 638 Muscle fatigue, 943

Muscle fibers, 449, 844, 932–934, 934t, 942

Muscle glycogen phosphorylase, 158–159, 159f, 160, 526, 531t, 538 Muscle metabolism

amino acid, 36, 37, 751, 752f, 755–757, 823, 830–832

conversion of branched-chain amino acids to glutamine, 830–832, 831f fasting state, 825–827, 826f

after high-protein meal, 835–836, 835f in hypercatabolic states, 836

oxidation of branched-chain amino acids, 823, 825, 827, 830, 831f, 941, 947 fatty acid oxidation in, 624, 726, 932, 938, 938f, 946–947, 946f

fuel use in

cardiac muscle, 624, 939

skeletal muscle, 624, 726, 939–948

glucose, 28, 28f, 580, 580f, 582f, 726, 942–945 AMP activation in, 942–943, 943f

in glycolysis/anaerobic glycolysis, 444, 938, 939, 942–945 in type IIb fast-twitch fibers, 942

glucose transport in, 428, 428f, 932

glycogen, 525–527, 527f, 532, 532t, 537–538, 537f, 726, 942–943 ATP availability and, 537

calcium and, 526, 532, 538 diabetes mellitus and, 535

epinephrine and, 526, 532, 853, 854f training and, 947–948

Muscular dystrophy Becker, 174, 934 congenital, 984

Duchenne, 174, 648, 934, 949t Mushroom poisoning, 252, 268, 271t Mutagens

action of, 240, 240f definition of, 240 Mutarotases, 67 Mutarotation, 67, 68f Mutases, 146 Mutations, 80, 211, 230

cancer-causing, 212, 344, 345–349 gain-of-function, 344, 347–348, 348f, 349, 360 lo

ss-of-function, 344 multiple, 344, 360–361 repair enzyme, 348–349

deletion, 277t, 278, 301, 303, 330 detection of, 330–333

by allele-specific oligonucleotide probes, 330 by polymerase chain reaction, 330–331

DNA repair disorders and, 247, 348–349 frameshift, 278, 278f

insertion, 277t, 278, 330 missense, 277t, 278 nonsense, 277t, 279 point, 89, 277t, 278, 330

protein synthesis affected by, 277–278 silent, 277t, 278

types of, 277t

Myasthenia gravis, 191, 193, 206–207, 208tMycobacterium tuberculosis, 252, 260, 268 myc transcription factor/oncogene, 349, 350–351, 351f, 355, 356, 356f

Myelin, 971–972, 972t

Myelin basic proteins (MBPs), 972

Myelin disorders (demyelinating diseases), 973–974 Myelin lipids, 971–972

Myelin sheath, 953–954, 971–972

formation by oligodendrocytes, 955–956, 971 formation by Schwann cells, 956, 971, 971f Myelin structural protein, 972

Myeloid leukemia, 883 Myeloperoxidase, 505, 513f, 514

Myocardial infarction (MI), 81, 91, 95, 97t, 101, 122, 125t angina in, 81, 101

aspirin (NSAID) therapy for preventing, 643, 659, 663t atherosclerosis and, 689

bioenergetics in, 375, 395, 410 blood formation in, 844

cardiac enzymes in, 81, 91, 95, 101, 116, 122 cell death in, 410

glycolysis in, 450

heart failure after, 395, 409 hypoxia in, 410, 481

ischemia in, 481, 487, 498–499, 500t

ischemia–reperfusion injury in, 499, 505, 508, 509, 519–520, 522t myoglobin levels in, 111

radical damage in, 507, 514 radioimmunoassay in, 116

thrombolytic therapy for, 481, 498–499, 904

Myoclonic epilepsy and ragged red fiber disease (MERRF), 491t, 492 Myofibrils, 934

Myoglobin, 100, 874

hemoglobin as paralog of, 89, 90f measuring levels of, 933

oxygen saturation curve for, 110, 110f release from damaged muscle, 111, 833 structure–function relationships in, 109–114 structure of, 109, 110f

Myoglobinuria, 111

Myokinase, 943, 943f

Myosin, in muscle contraction, 932, 936, 937f Myosin ATPase, 399, 399f

MyPlate, 16–17, 18 Myristoylation, 92, 93f NNAcetylcysteine, 917, 917f

N-Acetylgalactosamine, 556, 558f, 559, 985f, 986 N-Acetylglucosamine, 556, 984–986, 985f N-Acetylglucosamine 6-phosphate, 554, 556f N-Acetylglutamate (NAG), 760, 760f N-Acetylneuraminic acid (NANA), 544, 554–559, 656 N-Acetyl-p-benzoquinoneimine (NAPQI), 916–917, 917f N-Acetyltransferases, 554

NAD+

in ATP–ADP cycle, 394

binding fold for, 105f, 106, 107in cellular respiration, 372–373, 374f as coenzyme, 138–139, 138f, 144

in electron-transport chain, 394

in ethanol metabolism, 139, 151, 156, 702, 708–711 in glycolysis, 437, 438

NADH reoxidation to, 443–444

in oxidation–reduction reactions, 404, 405f, 407 synthesis of, 139

in tricarboxylic acid cycle, 457–458, 459, 461–463 Na+-dependent transporters, 415, 426, 427f, 430 amino acid transport in, 738, 741–742, 741f

NADH

in amino acid oxidation, 375

in anaerobic glycolysis, 434, 443–444 in β-oxidation, 375

electron transfer to O2, 482

in electron-transport chain, 375, 480–481, 482, 487

in ethanol metabolism, 139, 151, 156, 649, 702, 705, 708–711 in fatty acid desaturation, 637–638, 641f

in fatty acid oxidation, 591, 607, 608f β, 613–614, 613f, 617

peroxisomal, 618–620, 923

in fuel oxidation, 403, 404–407 in gluconeogenesis, 571, 571f

in glycolysis, 375, 434, 434f, 438 in hemoglobin synthesis, 869

in ischemic conditions, 939

isocitrate dehydrogenase regulation by, 468–469, 469f in ketone body metabolism, 621, 624, 625f

in lactic acidosis, 492

in oxidation–reduction reactions, 404, 405f, 407 oxidative fate of, 443–444

in oxidative phosphorylation, 480–481, 480f, 482, 488–489 PDC kinase inhibition by, 470–471

in pentose phosphate pathway, 544 product inhibition by, 156

shuttle systems for, 434, 434f, 443–444, 443f, 488–489, 488f in tricarboxylic acid cycle, 457, 457f, 459, 462–463, 468–469 NADH:CoQ oxidoreductase, 482, 484, 485f, 486–487

NADH dehydrogenase, 482, 484, 485f NADH/NAD+ ratio, ethanol and, 708–711 NADPH

in cholesterol synthesis, 669, 672, 673 in ethanol metabolism, 704–706

in fatty acid synthesis, 543, 548–550, 631, 635–637, 635f in fatty acid ω-oxidation, 620

in fuel oxidation, 395, 403 functions of, 543, 548–549

generation in pentose phosphate pathway, 371, 371f, 543, 543f, 545–546, 545f, 548– 550, 920–921

in glutathione defense system, 543, 548–549, 549f hepatic demand for, 920–921

in insulin release, 383, 661

in oxidation–reduction reactions, 405f, 407 pathways requiring, 549t

and red blood cells, 548–549, 549f, 843, 869

NADPH oxidase, 504, 505, 513–514, 513fNa+-glucose transporter, 177, 178f Na+–K+–ATPase pump, 177, 177f, 394, 399, 426, 742, 860

NAPQI (N-acetyl-p-benzoquinoneimine), 916–917, 917f Naproxen, 645

Nascent chylomicrons, 594, 600, 600f Nascent high-density lipoprotein, 681, 683f National Library of Medicine, 95–96

Native conformation, 101, 116–117 Natural killer (NK) cells, 871, 881f Necrosis, 410

Negative (acidic) amino acids, 80, 84f, 85t, 86–88 Negative control, 294, 297

Negative nitrogen balance, 823, 823f, 827, 836–838 Neonatal diabetes, 384, 390t

Neonatal hypoglycemia, 526, 532, 536, 538–539, 540t Neonatal jaundice, 553

Neonatal respiratory distress syndrome, 634, 655, 659, 663t Neoplasms, 214. See also Tumor(s)

Nernst equation, 406 Nervous system, 844, 953–975

amino acid metabolism in, 834, 834f cells of, 953, 954–956

chemical messengers in, 190, 194 (See also Neurotransmitters) glucose metabolism in, 27–28, 953

lipid synthesis in, 844, 970–972 Network-forming collagen, 980, 982

Neural tube defects, 791, 800–803, 803t Neuroblastoma, 348

Neurocrine signaling, 193 Neurodegenerative diseases, 504, 953 Neurofibromatosis, 355 Neurofibromin, 355

Neuroglia (glial cells), 953, 954–956 Neuroglycopenia, 381, 383, 579, 584–585 Neuromuscular junction, 935–936, 935f ACh and ACh receptors at, 192–193, 192f myasthenia gravis and, 206–207 Neuron(s), 954–955

apoptosis of, 955

glucose transport to, 428, 429f, 957 neurotransmitter synthesis and release, 958 structure of, 955, 955f

Neuronal nitric oxide synthase (nNOS), 511 Neuropathy

autonomic, 991

cofactor deficiencies in, 844 metabolic, 968–970

peripheral, in diabetes mellitus, 441, 844 Neuropeptides, 194, 844, 953, 958 Neuropeptide Y, 860, 861t

Neurotensin (NT), 861t

Neurotransmitters, 190, 192, 194, 388, 844, 953, 958–959. See also specific neurotransmitters

action of, 958–959, 959f amino acid, 834

amino acid metabolism to, 834, 844

common features of, 958, 959tglucose as precursor of, 27–28, 38 small nitrogen-containing, 194, 194f, 953, 958–968

synthesis of, 844, 953, 958 Neutral pH, 51 Neutrophils, 871

inflammatory response of, 895 normal values of, 870t phagocytosis by, 180, 871 production of, 881f

purine synthesis in, 811 staining properties of, 871

Nevi (moles), 346. See also Melanoma Next-generation DNA sequencing, 326–327, 326f

N10-formyltetrahydrofolate, in purine synthesis, 806, 806f, 807f NGA (99Tcm-galactosyl-neoglycoalbumin), 914

N-glycosidic bonds, 69, 70f Niacin

deficiency of, 746, 782 dietary requirement (RDA), 14t hepatic synthesis of, 919t

as lipid-lowering agent, 659, 696t NAD+ synthesis from, 139 structure of, 73, 74f

in tricarboxylic acid cycle, 459 Niacin deficiency, 14t, 474

Nicotinamide adenine dinucleotide. See NAD+; NADH Nicotinamide adenine dinucleotide phosphate. See NADPH Nicotinic acetylcholine receptor, 192–193, 193f, 203 Nicotinic acid. See Niacin

Niemann–Pick C1-like 1 protein (NPC1L1), 669 Niemann–Pick disease, 559t

Nirenberg, Marshall, 275–276

Nitric oxide, 505, 507, 507t, 511–513, 968 in hepatic fibrosis, 714, 714f

as neurotransmitter, 958, 968

in phagocytosis and inflammation, 513–514, 513f receptors for, 207

as retrograde messenger, 968, 968f synthesis of, 968

toxicity of, 512–513 direct toxic effects, 512 RNOS toxicity, 512–513

in vasodilation, 968, 968f

Nitric oxide synthase, 511, 511f, 968 endothelial, 511, 968

inducible, 505, 511 neuronal, 511

Nitrocellulose paper, blotting onto, 319, 324, 324f, 325f Nitrogen

amino acid, fate of, 751, 753–757

conversion to urea, 34, 36, 37, 38, 751, 757–765 (See also Urea cycle) disorders of, 761–764

fasting state, 760–761, 761f, 825–828

in glucose–alanine cycle, 756–757, 756f, 832, 832f glutamate and, 753–756, 753f, 754f, 755f, 756f

in kidney, 751, 752f, 828–829, 828fprinciples governing interorgan flux, 827–828 removal as ammonia, 34, 753–755, 754f

transamination reactions, 753, 753f transport to liver, 751, 756–757, 756f, 823 functional groups, 62

hepatic products, 918, 919t partial charge of, 65

Nitrogen balance, 12–13, 12t, 757 negative, 823, 823f, 827, 836–838

Nitrogen-containing compounds, 24, 29, 62, 72–74. See also specific types amino acids as precursors of, 73

charge of, 64, 65f

ring structures of, 62, 73–74 tautomers of, 74, 74f

Nitrogen-containing neurotransmitters, small, 194, 194f, 953, 958–968 Nitrogen dioxide, 74–75, 505, 512f

Nitrogenous bases, 73–74, 213 DNA, 213, 215–218, 215f, 215t free, 806, 811, 812f methylation of, 294

pairing of, 213, 214, 216–218, 217f, 223 DNA, 213, 214, 216–218, 217f

in DNA replication, 216–218, 233–234 mismatched, 242–243, 243f

RNA, 223 rRNA, 213, 225

in transcription, 216–218, 251, 252, 275 in translation, 216–218, 274, 275

purine, 73, 74f, 806–811, 817. See also Purine(s) pyrimidine, 73, 74f, 806, 813–817. See also Pyrimidine(s) RNA, 213, 223, 223f

salvage of, 806, 807, 811, 812f, 813–816, 815f synthesis of, 806–816, 918

Nitroglycerin, 481, 511

Nitroguanosine, 512–513 Nitroimidazole amoebicide, 914 Nitroprusside, 63, 75, 489 Nitrosamines, 347, 347f Nitrosative stress, 513 Nitrosylation, 513 Nitrotyrosine, 512–513

N-linked glycoproteins, 920, 920f N5,N10-methylene-FH4, 794, 795t N-myc oncogene, 347–348 Nomenclature

biochemical, 45 enzyme, 128, 144

enzyme, in glycogen metabolism, 533 fatty acid, 69

functional group, 63, 65 heptahelical receptor, 203 nitrogen-containing compounds, 73 nucleic acid, 275

prefixes and suffixes for clinical conditions, 375 prostaglandin, 640

protein, 275Nomogram, BMI, 12f

Noncompetitive inhibitors, 150, 154–155, 155f, 156f Nonessential amino acids, 769, 770f

Nonesterified fatty acids (NEFA), 660–662, 925, 927 Nonhistone chromosomal proteins, 221

Non-Hodgkin lymphoma, 295, 313, 315t doxorubicin toxicity in, 482 HIV-related, 362

interferon therapy for, 308 methotrexate for, 303, 795, 796 miRNA expression in, 313

R-CHOP chemotherapy for, 295, 313, 819

Nonnucleoside reverse transcriptase inhibitor (NNRTI), 268, 269 Nonoverlapping nature, of genetic code, 277

Nonpolar aliphatic amino acids, 83–85 Nonpolar hydrophobic amino acids, 80 Nonreducing ends, of glycogen, 527, 529, 529f Nonrepetitive secondary structures, 104, 104f Nonsense codons, 276

Nonsense mutations, 277t, 278 in β-thalassemia, 278, 279, 288t

Nonshivering thermogenesis, 494–496, 495f

Nonsteroidal antiinflammatory drugs (NSAIDs), 645, 645f, 663t Nontemplate strand, of DNA, 254, 254f

Nonthrombogenic surface, 903 Norepinephrine, 194, 846t, 853–854

counterregulation by, 380, 381f, 845, 846t, 853 as hormone, 388

inactivation and degradation of, 961–963, 962f in metabolic homeostasis, 380

metabolism and inactivation of, 854

as neurotransmitter, 388, 853, 953, 958, 959–963 in nonshivering thermogenesis, 495, 495f physiologic effects of, 853

receptors for, 388 release of, 853, 961

signal transduction in, 388 storage of, 961, 961f structure of, 388f

synthesis of, 834, 853, 959–961, 960f thyroid hormone and, 859

tumor secreting, 853 Normochromic anemia, 872, 872t Normocytic anemia, 872, 872t Northern blots, 324, 325f NotI restriction enzyme, 321t

Nuclear-encoded proteins, import into mitochondrial matrix, 475, 475f Nuclear envelope, 170f, 181, 181f

Nuclear localization signal, 181 Nuclear pores, 170f, 181, 181f Nuclear receptors, 304

Nucleic acid(s). See also DNA; RNA databases of, 95–96

structure of, 213–227 synthesis of, 806

Nucleic acid alphabet, 275

Nucleoid, 185Nucleolus, 170f, 181, 181f Nucleoside(s), 62, 69, 73–74, 215–216, 215t, 216f

Nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), 234, 268, 269, 326 Nucleosome(s), 221, 222f

Nucleosome cores, 221, 222f Nucleotide(s), 62, 69, 73–74, 80, 213 degradation of bases, 807, 817, 818, 818f DNA, 213, 215–216, 216f

functions of, 806

glycoprotein/glycolipid synthesis from, 544, 554, 554t, 556f interconversion of sugars, 543f, 544, 550–554, 555f

purine cycle of, 806, 811, 813f, 830–832, 832f, 947 RNA, 213, 223, 223f

synthesis of bases, 806–816, 918

in de novo pathway, 806, 807–811, 807f, 813, 814f, 816 in pentose phosphate pathway, 543, 543f

regulation of, 806, 810–811, 816

in salvage pathway, 806, 807, 811, 813–816, 815f tRNA, 225

Nucleotide binding fold, 100, 105f, 106, 107 Nucleotide excision repair (NER), 241, 242f Nucleus of cell, 169, 170f, 181, 181f Nuprin (ibuprofen), 645

Nutrients, 3, 11–16. See also specific nutrients AI, 11, 19

conditionally essential, 11, 12 DRI, 19

essential, 3, 11–12 RDA, 11, 19

Tolerable Upper Intake Level (UL), 13, 14t–15t, 19–20 Nutrition

dietary fuels in, 4–7 dietary guidelines in, 16–18

dietary requirements in, 3, 11–16

Nutritional anemias, 883. See also specific types OO

besity, 20t, 395, 409, 436 anthropometric measures of, 30–31 BMI in, 10, 658

body shape/fat pattern in, 30–31

central, in Cushing disease or syndrome, 858 ethanol intake and, 703, 711, 715t

exercise for la

ctate production in, 449, 454t

TCA cycle and, 458, 459, 462, 463, 467, 473

fatty acid metabolism in, 608, 609, 617, 624–625, 628t le

ptin in, 656–657

metabolic syndrome and, 30, 660–662 weight gain in, 634, 658, 663t Octanoic acid, 69

Octreotide, 849

Odd-chain-length fatty acids, 607, 609 oxidation of, 616–617, 616f O-glycosidic bonds, 69, 70f

Okazaki fragments, 230, 234, 235f, 238

Oleate, 6f, 609, 616Oleic acid, 69–70, 71f, 638, 922 Olestra, 600

Oligodendrocytes, 953, 955–956, 971 Oligomer, 108

Oligonucleotide probes, 330, 332 Oligonucleotides, 225

machine synthesis of, 322

Oligosaccharides, 25, 62 glycoprotein, 544 structure of, 69, 544

O-linked glycoproteins, 920, 920f ω-carbon, 69–70, 71f

ω-fatty acids, 638

ω-oxidation, of fatty acids, 607, 620–621, 620f Oncogenes, 344, 346, 349–353

apoptosis regulators, 350t, 360 and cell cycle, 350t, 351–353, 352f classes of, 348, 349t

growth factors and growth-factor receptors, 349, 350t, 351f hormone receptors, 350t

integration into host genome, 348 mechanism of activation, 349t microRNAs as, 349

proto-oncogene conversion to, 347–348, 348f and signal transduction cascades, 349–351

signal transduction proteins, 349–350, 350t, 351f transcription factors, 350–351, 350t

tumors associated with, 349t One-carbon pool, 790, 790f, 793–796 choline and, 795t, 801, 801f hepatic synthesis of donors, 919t

oxidation and reduction in, 793–794, 793f recipients in, 790, 790f, 794–796, 795f, 795t sources in, 790, 790f, 794, 794f, 795t tetrahydrofolate, 790, 790f, 793–796, 793f Open cycle, 471

Operator, 256, 297, 297f Operons, 256, 256f, 258, 267t corepressors of, 297, 298f inducible, 297, 298f

lac, 297, 298, 298f, 299f

in prokaryotic gene expression, 294, 296–300, 296f–298f repressors of, 296–297, 297f

trp, 297, 300, 300f Opportunistic infections, 225

Organelles, 169, 170–184, 170f. See also specific organelles Organic acids, 51

Organic molecules bond polarity in, 65

carbon structure of, 63

functional groups of, 62, 63–65, 64f reactivity of, 65, 66f

solubility of, 65, 66f structure of, 62

Organic radicals, 507, 507t Organification of iodide, 857

Organophosphorus insecticides, 129, 129f, 140, 143, 143fOrientation, in catalysis, 136

Origin of replication, 231, 232f, 236, 237f Orlistat, 601

Ornithine, 759

in cystinuria, 743 synthesis of, 776, 778

in urea cycle, 751, 757–759, 757f, 759 Ornithine aminotransferase, 759, 759f, 778 Ornithine transcarbamoylase (OTC), 759

Ornithine transcarbamoylase deficiency, 212, 759, 762, 766t, 817 Orotate monophosphate (OMP), 806

Orotate phosphoribosyltransferase, 813

Orotic acid (orotate), 759, 813, 814f, 816, 817 Orotic aciduria, hereditary, 816, 820t Orotidylic acid decarboxylase, 813

Osmolality, 50

Osmotic diuresis, 50, 56, 57, 570, 626 Osmotic pressure, 50

cartilage, 987

plasma proteins and, 893, 894, 919 Osteoarthritis, 986

Osteogenesis imperfecta (OI), 982, 992–993 Osteomalacia, 15, 20t

Osteopenia, 772

Osteoporosis, 15, 20t, 429, 772, 785, 870 Outer leaflet, of plasma membrane, 171–172 Outer mitochondrial membrane, 180, 180f Overweight, 10

Oxalate, 774, 774f Oxaloacetate

amino acid degradation to, 776

amino acid synthesis from, 770f, 776, 778, 778f anaplerotic pathways for, 472, 472f, 972 aspartate interconversion with, 573, 573f citrate synthase regulation by, 468, 468f conversion to PEP, 573, 573f

in fatty acid synthesis, 635, 635f

in gluconeogenesis, 572–573, 572f, 575–576, 725f in malate–aspartate shuttle, 488–489, 488f malate interconversion with, 573, 573f precursors of, 469

pyruvate conversion to, 572–573, 572f, 573f, 721 succinate oxidation to, 460f, 461

in tricarboxylic acid cycle, 458, 459, 460f, 461, 468, 469, 472 in urea cycle, 759, 759f

Oxaluria, primary type 1, 787t

Oxidases, 144, 407, 407f. See also specific types in cancer, 520–521

radicals from, 508

Oxidation, 64. See also specific processes

Oxidation, fuel, 1, 2f, 3, 4–5, 369–375. See also specific fuels and pathways ATP generation in, 4–5, 4f, 403–407

bacterial, 185–186

cellular respiration for, 372–374, 374f energy from, 394, 403–407

enzyme regulation in, 151–162

exergonic nature of, 394fasting state, 34 fed state, 24, 24f

mitochondrial, 169

oxidative phosphorylation for, 403–407, 406f problems in, pathologic consequences of, 375 thermogenesis in, 403

Oxidation–reduction reactions, 64, 404–407 caloric value of fuels and, 406–407 coenzymes in, 134, 136–139, 404 electron-transport chain, 484–486, 485f coenzyme Q in, 485, 485f

copper and reduction of oxygen in, 485f, 486 cytochromes in, 482, 485–486, 485f

NADH:CoQ oxidoreductase in, 484, 485f

succinate dehydrogenase and other flavoproteins in, 484, 485f FAD reduction in, 404, 405f

Gibbs free energy change in, 405–406 NADPH in, 403, 407

NAD+ reduction in, 404, 405f

one-carbon groups of tetrahydrofolate, 793–794, 793f reduction potential in, 394, 405–406, 406t

Oxidative phosphorylation (OXPHOS), 5, 394–395, 403–407, 404f, 435, 480–500, 480f ATP synthase in, 480, 483–484

chemiosmotic hypothesis of, 480, 480f, 482

Соседние файлы в папке новая папка