Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3703.pdf
Скачиваний:
9
Добавлен:
15.11.2022
Размер:
11.37 Mб
Скачать

Fuzzy Fractional PID Controllers: Analysis, Synthesis and Implementation

283

 

 

J

15

10

5

0

0.2

 

 

0

 

 

2

 

0.4

 

 

 

4

 

0.6

 

β

 

6

0.8

 

 

8

m

110

Figure 23. Error J versus β and m for G5(s).

K e

K ie

1.5

 

 

 

 

2

 

 

 

 

1

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ce

1

 

 

 

 

 

 

 

 

K

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

0

 

 

 

0

 

0.5

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

 

 

0

 

 

4

 

0

 

 

 

4

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

6

m

 

0

 

 

 

6 m

0.4

 

 

 

0.2

 

 

 

 

0.6

 

8

 

 

0.4

0.6

 

 

8

β

0.8

 

 

 

 

0.8

 

 

10

 

 

β

 

 

10

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

4

 

 

 

0.3

 

 

 

 

 

 

 

 

 

3

 

 

 

0.2

 

K

2

 

 

 

 

 

u

 

 

 

 

0.1

 

 

 

 

 

0

 

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

0

 

2

0

 

 

4

0

 

 

0

 

 

 

4

 

 

 

0.2

 

0.2

 

 

 

 

 

 

6

m

0.4

 

6 m

0.4

 

 

 

 

 

 

 

 

β

0.6

8

0.6

 

8

 

0.8

 

β

0.8

 

 

 

1

10

 

1

10

 

Figure 24. The PDβ +I parameters (Ke, Kce, Kie, Ku) versus β and m for G5(s).

5.Conclusion

This chapter has presented several fuzzy control structures with fractional-order derivative and integral actions combined to form a PID-type controller. Comparison with conventional fuzzy and PID controllers is performed to illustrate the effectiveness and robustness of the proposed algorithms. Another distinguished feature of this study is the use of discrete

Complimentary Contributor Copy

284

Ramiro S. Barbosa and Isabel S. Jesus

 

 

20

 

 

 

 

 

 

 

 

 

 

4.5

 

 

15

 

 

 

4

 

 

 

 

 

 

 

 

s

 

 

 

3.5

 

 

 

 

 

 

 

 

t

 

 

 

r

 

 

 

 

 

 

t

 

 

10

 

 

 

3

 

 

 

 

 

 

2.5

 

 

5

 

 

 

2

 

0

0

 

 

 

0

 

 

 

0

 

 

0.2

 

 

0.2

 

2

 

 

2

 

 

0.4

 

 

0.4

 

4

 

 

4

 

 

0.6

 

 

0.6

6

 

 

6

β

β

 

 

 

m

0.8

8

m

 

0.8

8

 

 

 

1

10

 

 

1

10

10

t p

15

 

 

 

10

 

 

 

5

 

 

0

0

 

 

2

 

 

 

0.2

 

 

4

0.4

 

 

 

6

 

 

0.6

m

 

 

β

0.8

8

 

 

 

 

 

1

10

 

ov(%)

8

6

4

2

0

0

0.2

 

 

 

0

 

 

 

2

0.4

 

 

 

 

 

 

4

 

0.6

 

 

β

 

6

 

 

 

m

0.8

8

 

 

 

 

110

Figure 25. Parameters ts, tr , tp, ov(%) versus β and m of the step responses of the closedloop system with G5(s) and with a fuzzy PDβ +I controller.

fuzzy fractional-order controllers in the form of series and rational approximations which reveals useful for a digital implementation of these algorithms.

In the first part of chapter, a methodology for tuning fuzzy fractional PID controllers is introduced. This methodology is simple and effective and can be used to replace an existent integer/fractional PID controller in order to enhance system performance. Also, it was demonstrated that, with this approach, the designed controllers are equivalent to the conventional fractional PD/PID controllers by using a linear input-output mapping of the rule base of the fuzzy fractional controller. Moreover, by making the controller nonlinear, the performance of the control system proves to be, in most systems, better than its linear counterpart.

In the second part of chapter, were developed optimal fuzzy fractional PID controllers in which the parameters were tuned through a PSO algorithm. A nonlinear fuzzy control system with saturation in actuator is analyzed. In general, the control strategies presented, give better results than those obtained with conventional integer control structures, showing, once more, its effectiveness in the control of nonlinear systems. An analysis study regarding the influence of order of discrete rational approximations is also provided.

Certainly, the incorporation of fuzzy reasoning into fractional-order controllers will increase the applicability of these controllers.

Complimentary Contributor Copy

Fuzzy Fractional PID Controllers: Analysis, Synthesis and Implementation

285

 

 

References

[1]Kiam Heong Ang and Gregory Chong, PID control system analysis, design, and technology, IEEE Transactions on Control Systems Technology 13 (2005), 559–576.

[2]K. J. Astrom and T. Hagglund, PID controllers: Theory, design, and tuning, Instrument Society of America, USA, 1995.

[3]Ramiro S. Barbosa, On linear fuzzy fractional PD and PD+I controllers, Proceedings of FDA’10, 4th IFAC Workshop Fractional Differentiation and its Applications (Badajoz, Spain), October 18-20, pp. 1–6.

[4]Ramiro S. Barbosa and Isabel S. Jesus, Application of fuzzy fractional PD+I controllers tuned by a genetic algorithm, 39th Annual Conference of the IEEE Industrial Electronics society-IEEE-IECON’13 (2013), 3333–3338.

[5], A methodology for the design of fuzzy fractional PID controllers, 10th International Conference on Informatics in Control, Automation and Robotics - ICINCO 2013 (2013), 276–281.

[6]Ramiro S. Barbosa, Isabel S. Jesus, and Manuel F. Silva, Fuzzy reasoning in fractional-order PD controllers, Proceedings of AIC’10, 10th WSEAS International Conference on Applied Informatics and Communications - New Aspects of Applied Informatics, Biomedical Electronics Informatics and Informatics and Communications (Taipei, Taiwan), August 20-22, 2010, pp. 252–257.

[7]Ramiro S. Barbosa, J. A. Tenreiro Machado, and Isabel M. Ferreira, Tuning of PID controllers based on bode’s ideal transfer function, Nonlinear Dynamics 38 (2004), 305–321.

[8], Least-squares design of digital fractional-order operators, Proceedings of the First IFAC Workshop on Fractional Differentiation and its Applications (FDA’04) (Bordeaux, France), July 19-21, 2004, pp. 434–439.

[9], Pole-zero approximations of digital fractional-order integrators and differentiators using signal modeling techniques, 16th IFAC World Congress (Prague, Czech Republic), July 4-8, 2005.

[10]Ramiro S. Barbosa, J. A. Tenreiro Machado, and Manuel F. Silva, Time domain design of fractional differintegrators uing least-squares, Signal Processing 86 (2006), 2567– 2581.

[11], Discretization of complex-order algorithms for control applications, Journal of Vibration and Control 14 (2008), no. 9/10, 1349–1361.

[12]James Carvajal, Guanrong Chen, and Haluk Ogmen, Fuzzy PID controller: Design, performance evaluation, and stability analysis, Journal of Information Science 123 (2000), 249–270.

Complimentary Contributor Copy

286

Ramiro S. Barbosa and Isabel S. Jesus

 

 

[13]Y. Q. Chen and B. M. Vinagre, A new IIR-type digital fractional order differentiator, Signal Processing 83 (2003), no. 11, 2359–2365.

[14]Y. Q. Chen, B. M. Vinagre, and I. Podlubny, Continued fraction expansion approaches to discretizing fractional order derivatives-an expository review, Nonlinear Dynamics 38 (2004), 155–170.

[15]YangQuan Chen and Kevin L. Moore, Relay feedback tuning of robust PID controllers with iso-damping property, IEEE Transactions on systems, Man, and Cybernetics-Part B: Cybernetics 35 (1) (2005), 23–31.

[16]S. Das, I. Pan, and S. Das, Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time, ISA Transactions 52 (2013), 550–566.

[17]S. Das, I. Pan, and A. Gupta, A novel fractional order fuzzy PID controller and its optimal time domain tuning based on integral performance indices, Engineering Applications of Artificial Intelligence 25 (2012), 430–442.

[18]H. Dekavari, R. Ghaden, A. Ranjbar, and S. Momani, Fuzzy fractional order sliding mode controller for nonlinear systems, Comunications in Nonlinear Sicence and Numerical Simulation 15 (2010), no. 4, 963–978.

[19]Goldberg E., Genetic algorithms in search optimization and machine learning, Addison-Wesley, 1989.

[20]R. C. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, Sixth International Symposium on Micro Machine and Human Science (1995), 39–43.

[21]R. C. Eberhart and Y. Shi, Particle swarm optimization: developments, applications and resources, Congress on Evolutionary Computation (2001).

[22]I. Eker and Torun Yunis, Fuzzy logic control to be conventional methods, Energy Coversion and Management 47 (2006), 377–394.

[23]S. Glichet and L. Foulloy, Fuzzy controllers: Synthesis and equivalences, IEEE Transactions on Fuzzy Systems 3 (1995), no. 2, 140–148.

[24]Monson H. Hayes, Statistical digital signal processing and modeling, Wiley & Sons, New York, 1996.

[25]R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000.

[26]J. Jantzen, Foundations of fuzzy control, Wiley and Sons, Chichester, England, 2007.

[27]David F. Jenkins and Kevin M. Passino, An introduction to nonlinear analysis of fuzzy control systems, Engineering and Technology 7 (1999), no. 1, 75–103.

[28]Isabel S. Jesus, Application of PSO algorithm for the study of fractional order electrical potential, 18th IFAC World Congress - IFAC-WC’11 (2011), 10812–10817.

Complimentary Contributor Copy

Fuzzy Fractional PID Controllers: Analysis, Synthesis and Implementation

287

 

 

[29]Isabel S. Jesus and Ramiro S. Barbosa, Application of fuzzy fractional PD+I controllers tuned by a genetic algorithm, 39th Annual Conference of the IEEE Industrial Electronics society-IEEE-IECON’13 (2013), 3333–3338.

[30], Tuning of fuzzy fractional PD+I controllers by genetic algorithm, 10th International Conference on Informatics in Control, Automation and Robotics - ICINCO 2013 (2013), 282–287.

[31]Isabel S. Jesus and J. A. Tenreiro Machado, Application of fractional calculus in the control of heat systems, Journal of Advanced Computational Intelligence and Intelligent informatics 11(9) (2007), 1086–1091.

[32], Implementation of fractional-order electromagnetic potential through a genetic algorithm, Journal of Communications in Nonlinear Science and Numerical Simulation 14 (2009), 1838–1843.

[33]Isabel S. Jesus, J. A. Tenreiro Machado, and Ramiro S. Barbosa, Fractional order nonlinear control of heat system, 13rd workshop on Fractional Differentiation and its Applications - IFAC-FDA’08 (Ankara, Turkey), 2008.

[34]Isabel S. Jesus, J. T. Machado, and Ramiro S. Barbosa, On the fractional order control of heat systems, Intelligent Engineering Systems and Computational Cybernetics, Springer, Netherlands, 2008.

[35]J. Kennedy and R. C. Eberhart, Particle swarm optimization, IEEE international conference on neural networks IV (1995), 1942–1948.

[36]C. C. Lee, Fuzzy logic in control systems: fuzzy logic controller-part I and II, IEEE Transactions on System Man, and Cybernetics-Part B: Cybernetics 20 (1990), no. 2, 404–435.

[37]H.-H Li and H. B. Gatland, Conventional fuzzy control and its enhancement, IEEE Transactions on System Man, and Cybernetics-Part B: Cybernetics 26 (1996), no. 5, 791–797.

[38]Mitchell M., An introduction to genetic algorithms, SMIT Press, 1998.

[39]J. A. Tenreiro Machado, Analysis and design of fractional-order digital control systems, SAMS Journal of Systems Analysis, Modelling and Simulation 27 (1997), 107– 122.

[40]G. K. I. Mann, B.-G Hu, and R. G. Cosine, Analysis of direct action fuzzy PID controller structures, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 29 (1999), no. 3, 371–388.

[41]Z. Michalewicz, Genetic algorithms + data structures = evolution programs, Springer-Verlag, 1996.

[42]K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley & Sons, New York, 1993.

Complimentary Contributor Copy

288

Ramiro S. Barbosa and Isabel S. Jesus

 

 

[43]M. Mizumoto, Realization of PID control by fuzzy control methods, Fuzzy Sets and Systems 70 (1995), 171–182.

[44]K. B. Oldham and J. Spanier, The fractional calculus, Academic Press, New York, 1974.

[45]Manuel D. Ortigueira and Antonio´ J. Serralheiro, New insights into pseudo-fractional ARMA modelling, Proceedings of the Second IEEE International Conference on Computational Cybernetics (ICCC 2004) (Vienna, Austria), August 30-September 1, 2004, pp. 391–394.

[46]A. Oustaloup, La d´erivation non enti`ere: Th´eorie, synth`ese et applications, Editions Herm`es, Paris, 1995.

[47]I. Pan and S. Das, Intelligent fractional order systems and control: An introduction, Springer, Berlin, 2013.

[48]K. M. Passino and S. Yurkovich, Fuzzy control, Addison-Wesley, Menlo Park, California, 1998.

[49]Eduardo S. Pires, Paulo B. Moura de Oliveira, J. A. Tenreiro Machado, and Isabel S. Jesus, Fractional order dynamics in a particle swarm optimization algorithm, Seventh International Conference on Intelligent Systems Design and ApplicationsIEEE - ISDA’07 (2007), 703–708.

[50]I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.

[51], Fractional-order systems and PIλDµ-controllers, IEEE Transactions on Automatic Control 44 (1999), no. 1, 208–214.

[52]H. Shayeghi, A. Safari, and H. A. Shayanfar, Multimachine power system stabilizers design using PSO algorithm, International Journal of Electrical Power and Energy Systems Engineering 1 (2008), 703–708.

[53]M.-Y. Shieh and T.-H. S. Li, Design and implementation of integrated fuzzy logic controller for a servomotor system, Mechatronics 8 (1998), 217–240.

[54]B. M. Vinagre, Y. Q. Chen, and I. Petras, Two direct tustin discretization methods for fractional-order differentiator/integrator, Journal of the Franklin Institute 340 (2003), 349–362.

[55]Z. H. Zhan, J. Zhang, Y. Li, and H. S. H Chung, Adaptive particle swarm optimization, IEEE Transactions on Systems, Man, and Cybernetics 39 (2009), 1362–1381.

Complimentary Contributor Copy

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]