Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3703.pdf
Скачиваний:
9
Добавлен:
15.11.2022
Размер:
11.37 Mб
Скачать

232 Yuriy Povstenko

fractional generalizations of the one-dimensional equation (27) were considered. It should be noted that interesting results were also obtained for fractional reaction-diffusion systems (see Datsko and Gafiychuk (2012), Gafiychuk and Datsko (2010)).

Lastly, the constitutive equation

(t −

ζ

[−a grad c(τ ) + vc(τ )] dτ (37)

j (t) = ζ Z0

(t − τ )β

2

Eβ−α, β−1

1

 

t

 

 

 

τ )β−α

 

produces the following fractional telegraph equation with the advection term:

αc

+ ζ

β c

= a c − v · grad c.

(38)

∂tα

∂tβ

3.Theory of Diffusive Stresses

The theory of diffusive strain and stress is governed by a system of partial differential equations consisting of the equations of elasticity with gradient of concentration taken into account. The problem can be treated as an uncoupled in the case when the influence of the time change of strain on the matter flux is neglected. The first theoretical investigation of diffusive stresses dates back to Podstrigach (1961, 1963, 1965). For additional references, further generalizations and discussion see Nowacki (1974), Nowacki and Olesiak (1991), Podstrigach and Povstenko (1985), among others.

Povstenko (2005) proposed the theory of thermoelasticity based on the time-fractional heat conduction equation. A comprehesive review of further generalizations of fractional thermoelasticity (fractional theory of diffusive stresses) can be found in Povstenko (2013).

The stressed-strained state of a solid is governed by the equilibrium equation in terms of displacements

µ u + (λ + µ)grad divu = βcKgradc,

(39)

the stress-strain-concentration relation

 

σ = 2µe + (λ tr e − βcKc)I

(40)

and the corresponding equation describing diffusion. In this paper we will use the timefractional advection-diffusion equation

αc

∂tα = a c − v · grad c. (41) Here u is the displacement vector, σ the stress tensor, e the linear strain tensor, λ and µ are Lam´e constants, K = λ + 2µ/3, βc is the diffusion coefficient of volumetric expansion, I denotes the unit tensor.

As in the case of classical thermoelasticity or the standard theory of diffusive stresses we can use the representation of stresses in terms of the displacement potential Φ (Parkus (1959))

σ = 2µ (rrΦ − I ΔΦ) ,

(42)

where r stands for the gradient operator. The displacement potential is determined from the equation

ΔΦ = mc, m =

1

+ ν

 

βc

(43)

1

− ν

3

 

 

with ν being the Poisson ratio.

Complimentary Contributor Copy

Theory of Diffusive Stresses ...

233

3.1.The Time-fractional Advection-diffusion Equation in a Plane

Consider the time-fractional advection diffusion equation

 

 

∂tα

= a ∂x2 +

∂y2

 

− v ∂x − v ∂y , −∞ < x < ∞, −∞ < y < ∞,

(44)

 

αc

 

2c

2c

 

 

∂c

 

∂c

 

under initial condition

 

 

 

 

 

 

 

 

 

 

 

 

 

t = 0 :

c = p0 δ(x) δ(y).

(45)

Here δ(x) is the Dirac delta function. In (45) we have introduced the constant multiplier p0 to obtain the nondimensional quantities displayed in Figures.

The zero conditions at infinity are also imposed:

lim c(x, y, t) = 0,

lim c(x, y, t) = 0.

(46)

x→±∞

y→±∞

 

In this paper, we will use the integral transform technique. Recall that the Caputo fractional derivative for its Laplace transform rule requires the knowledge of the initial values of the function f (t) and its integer derivatives of order k = 1, 2, . . . , m − 1 (see Kilbas et al. (2006), Podlubny (1999)):

L dtα

= sαf (s) − k=0 f (k)(0+)sα−1−k, m − 1 < α < m,

 

 

m−1

 

dαf (t)

X

where s is the transform variable, the asterisk denotes the Laplace transform. The exponential Fourier transform

F {f (x)} = f (ξ) = √

Z−∞ f (x) eixξ dx

 

 

 

1

 

 

e

 

 

 

is used in the domain −∞ < x < ∞ and has the inverse

F−1 f (ξ)

o

= f (x) = √

Z−∞ f (ξ) e−ixξ dξ .

n e

 

 

 

e

 

 

 

1

The Fourier transform of the mth derivative of a function has the form

F

dxm

= (−iξ)mf (ξ).

 

 

dmf (x)

e

(47)

(48)

(49)

(50)

Applying to Eq. (44) the Laplace transform with respect to time t and the double Fourier transform with rspect to the space coordinates x and y gives

 

 

c (ξ, η, s) =

 

p0

 

 

 

 

 

sα−1

 

 

 

 

(51)

 

 

 

2π sα + a(ξ2 + η2) − iv(ξ + η) .

 

 

 

 

e

 

 

 

 

 

or after inversion of transforms

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p0

∞ ∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c(x, y, t) =

Z−∞ Z−∞ Eα

 

− a

ξ2

+ η2

 

− iv(ξ + η) tα

 

 

ixξ

2

 

 

e

iyη dξ dη, (52)

 

 

 

 

 

 

 

 

 

 

 

Complimentary Contributor Copy

234

 

Yuriy Povstenko

 

 

 

 

 

where the following formula (Kilbas et al. (2006), Podlubny (1999))

 

L−1

sα + b = Eα (−btα)

(53)

 

 

sα−1

 

has been used with Eα(z) being the Mittag-Leffler function in one parameter α

 

 

 

 

X

zk

 

Eα(z) =

 

 

, α > 0, z C.

(54)

 

(αk + 1)

k=0

The substitution

 

 

 

 

 

v

 

 

 

 

v

 

 

 

 

 

 

ξ

0

= ξ − i

η

0

= η − i

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

2a

 

2a

 

 

 

allows us to get

 

 

 

 

Z−∞ Z−∞ Eα − a(ξ2 + η2) + 2a tα

c(x, y, t) = 2 exp

 

2a

 

 

p0

v(x + y)

 

 

 

 

 

 

v2

× cos(xξ) cos(yη) dξ dη,

 

 

 

 

 

 

 

 

 

 

 

where the primes have been omitted for brevity sake.

 

 

 

 

 

 

Next we introduce the polar coordinates in the (ξ, η)–plane:

 

 

 

 

 

 

 

 

ξ = ρ cos θ,

η = ρ sin θ,

 

 

 

thus obtaining:

exp

 

 

 

Z0

 

Z0

Eα − aρ2

 

2a tα

c(x, y, t) = 2

 

2a

 

 

+

 

 

p0

 

 

 

v(x + y)

 

 

 

 

v2

 

× cos(xρ cos θ) cos(yρ sin θ) ρ dρ dθ.

 

 

 

Due to periodic properties of the integrand

 

 

 

 

 

 

 

 

Z

 

 

 

 

 

 

 

Z π/2

 

 

 

 

 

 

(55)

(56)

cos(xρ cos θ) cos(yρ sin θ) dθ = 4

cos(xρ cos θ) cos(yρ sin θ) dθ.

(57)

0

0

 

Changing variables w = sin θ and taking into account the following integral (Prudnikov et al. (1981))

 

1

cos p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − x2

 

π

 

 

 

 

 

 

 

 

 

 

 

 

cos(qx) dx =

 

 

J0

 

p2 + q2

,

 

 

 

(58)

 

 

 

 

 

 

 

 

 

 

 

 

 

Z0

 

 

2

 

 

 

2

 

 

 

 

1 − x

 

 

 

 

 

 

 

 

p

 

 

 

 

 

where Jn is the Bessel function of the first kind of the order n, we get

 

 

 

 

 

 

 

p0

v(x + y)

 

 

 

 

 

 

v2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c(x, y, t) =

 

exp

 

 

Z0

 

Eα − aρ2

+

 

 

 

tα J0

 

x2

+ y2 ρ

 

ρ dρ.

2a

 

 

2a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

 

 

(59)

Complimentary Contributor Copy

 

 

 

 

 

Theory of Diffusive Stresses ...

 

 

 

 

 

 

 

 

235

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v¯ = 0

 

 

 

 

 

 

 

 

 

v¯ = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.08

 

 

 

 

 

 

 

 

 

JJ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JJ^

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.06

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v¯ = 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.04

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−2.0

 

 

 

 

 

−1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−3.0

 

 

 

 

 

0.0

1.0

 

 

2.0

 

 

 

3.0

Figure 1. Dependence of the fundamental solution to the Cauchy problem on distance (the classical advection-diffusion equation, α = 1).

Let us analyze several particular cases of the solution (59). In the case of standard advection-diffusion equation (α = 1 and E1(−x) = e−x), evaluating the integral (Prudnikov et al. (1983))

 

 

 

 

 

 

 

 

1

 

 

 

 

 

q2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z0

x e−px

J0(qx) dx =

 

exp

 

 

,

p > 0, q > 0,

 

(60)

2p

4p

 

we arrive at

 

 

 

 

 

 

 

 

p0

 

exp −

(x

vt)2 + (y

vt)2

.

 

 

 

 

 

 

 

c(x, y, t) =

 

 

 

 

 

 

 

(61)

 

 

 

4πat

 

 

 

 

 

 

 

4at

 

 

 

 

 

 

 

In the case α = 1/2 the Mittag-Leffler function can be represented as

 

 

 

 

 

 

 

 

E1/2(−x) = 2π

Z0

e−u2 −2xudu

 

 

 

 

 

 

 

 

(62)

and the corresponding solution reads

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p0

 

 

 

 

 

exp −

(x

 

 

 

 

 

2

 

 

(y

 

2v

 

 

2

du. (63)

 

 

1

 

2

 

 

 

 

+

 

 

tu)

 

 

 

 

 

 

 

2v tu)

 

 

 

 

 

c(x, y, t) =

4a

 

 

Z0

 

e

u

 

 

 

 

 

 

 

 

8a

 

 

 

 

 

 

 

 

u

 

 

 

 

 

 

 

 

 

 

 

 

3/2

 

 

 

 

 

 

tu

 

 

 

 

 

The results of numerical computations of concentration for y = 0 are presented in Fig. 1

for α = 1 and in Fig. 2 for α = 0.5. The following nondimensional quantities

 

 

atα

 

 

tα/2

 

x

 

 

y

 

c¯ =

 

c,

v¯ =

 

 

v,

x¯ =

 

 

,

y¯ =

 

 

(64)

p0

 

 

a

 

atα/2

atα/2

have been introduced.

Complimentary Contributor Copy

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]