Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3703.pdf
Скачиваний:
9
Добавлен:
15.11.2022
Размер:
11.37 Mб
Скачать

106

Riad Assaf, Roy Abi Zeid Daou, Xavier Moreau et al.

 

 

Note that, as long as the frequency of variation of the temperature is low relatively to

the diffusivity , the temperature variation is uniform and harmonic.

When the frequency of variation of the temperature

increases, the diffusion depth of

the temperature decreases in the semi-infinite medium.

 

5. Finite Plane

We consider a finite, homogeneous, isotropic, one-dimensional plane medium of

thickness , conductivity

, diffusivity , and of initial temperature zero all over the medium

(Figure 9). A heat flux

( ) is normally applied on its surface at

; it is assumed that

there are no losses at this point. Consequently, a temperature gradient (

) appears, which

is a function of the independent time variable as well as the abscissa

of the temperature

measurement point, with

,

- inside the medium.

 

5.1. System Definition

The one-dimensional heat conduction equation (Özişik, 1985) is given by a partial differential equation:

( )

( )

.

(47)

 

 

 

 

 

 

Since the initial temperature is zero all over the medium:

(

)

.

(48)

The Fourier law states the boundary conditions (Özişik, 1985) where the flux is applied, as well as at the second end:

(

)

 

( )

 

 

 

 

 

 

 

(49)

 

 

 

 

 

 

 

 

 

 

 

(

 

)

 

.

 

 

 

 

 

 

(50)

 

 

 

 

 

 

 

 

 

 

 

5.2. System Resolution

The system of (Eq. 47-50) represents the relations that model the diffusive interface knowing that the input signal is the flux ( ) whereas the output signal is the temperature

( ) as shown in Figure 9.

 

 

 

 

 

The initial condition of the temperature being zero, Laplace transform

* + of (Eq. 47) is:

 

̅( )

 

̅( )

where ̅( )

* ( )+

(51)

 

 

 

 

 

 

 

 

Complimentary Contributor Copy

From the Formal Concept Analysis to the Numerical Simulation …

107

 

 

The solution of (Eq. 51) is similar to the previous case, hence:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

̅( )

( ) √ ⁄

 

( ) √ ⁄ .

(52)

Resolving (Eq. 52) for the boundary conditions (Eq. 49-50) gives the values of

( ) and

( ), let:

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

( )

 

 

 

 

̅( )

 

 

 

 

 

 

 

{

 

 

 

 

 

 

 

 

 

(53)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

 

 

( )

 

 

 

 

 

 

Taking into consideration the definitions of the characteristic parameters and the outcome of (Eq. 53), thus:

( )

{ ( )

then the solution of (Eq. 51) is found to be:

 

√ ⁄

√ ⁄

√ ⁄

 

√ ⁄

√ ⁄

√ ⁄

̅( )

(54)

̅( )

 

 

 

 

 

 

 

 

 

 

 

 

 

̅

 

(

)√ ⁄

( )√ ⁄

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

 

 

 

√ ⁄

√ ⁄

̅( ) .

(55)

Under the assumption of an initial condition of the temperature being zero, the transfer

function ( ) between the input flux ̅( ) and the output temperature ̅(

) is:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

̅(

)

 

 

 

 

 

(

 

)√ ⁄

( )√ ⁄

 

 

(

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

(56)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

̅

( )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

√ ⁄

√ ⁄

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

then, introducing the hyperbolic functions

 

 

and

 

 

 

 

 

 

 

the

 

 

transfer

function ( )

becomes:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

̅(

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

((

 

 

)√ ⁄ )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

(57)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

̅

( )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. √ ⁄ /

.

√ ⁄ /

 

 

 

 

 

 

 

 

 

 

 

or rewritten as:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

 

)

 

 

 

 

 

 

( )

(

 

 

) (

 

 

) ,

 

 

 

 

 

 

(58)

where:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complimentary Contributor Copy

108

Riad Assaf, Roy Abi Zeid Daou, Xavier Moreau et al.

 

 

 

 

 

 

 

 

 

 

̅(

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

̅( )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

 

 

 

 

 

̅(

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

̅(

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

 

)

 

 

̅(

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(59)

 

 

 

 

 

̅(

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(√ ⁄

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

 

)

 

̅(

)

 

 

 

 

 

 

 

 

 

 

(√ ⁄

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

̅(

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(√ ⁄

)

 

 

 

 

 

 

{

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with the following considerations:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(60)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One can derive from (Eq. 60) that

 

 

 

and

 

 

 

 

 

 

 

are linked by the following relation:

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

/

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

(61)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One can derive also the thermal diffusion time constant defined as:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(62)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To clarify, the different temperatures found in the system (Eq. 59) are as follows:

 

-

̅(

 

) is the measured temperature at

 

 

 

 

 

 

 

 

 

if the medium is considered to be

 

a semi-infinite medium.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

̅(

) is the measured temperature at

 

 

 

 

 

 

 

 

 

of the finite medium of length .

-

̅(

) is the measured temperature at

,

 

,

-.

 

 

Consequently, the transfer function (

 

 

) of the system can be seen as four cascading

functions represented in (Figure 10).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The function

depends on the medium physical characteristics, it links the input flux

̅( ) and the fractional derivative of order

of the temperature at

.

 

Then,

( ) is a fractional integrator of order

 

 

 

 

 

 

 

that gives the temperature at

. Its

output is the temperature ̅(

).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The third block is the transfer function (

 

 

 

 

 

 

 

 

 

) between the temperatures ̅(

) and

̅(

).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complimentary Contributor Copy

 

 

 

From the Formal Concept Analysis to the Numerical Simulation …

109

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fourth part is the transfer function

(

 

 

 

) having as input ̅(

) and as output

the temperature ̅(

).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H(x, s, L)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0, s, oo)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0, s, L)

 

 

 

 

 

 

 

 

 

 

s0.5T

(0, s, oo)

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

(x, s, L)

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

T

 

 

 

 

 

 

 

I 0.5(s)

 

 

 

 

 

 

 

F(0, s L)

 

 

 

 

 

G(x, s, L)

 

 

 

 

 

 

 

 

H0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Block diagram illustrating the transfer function

(

) of the finite medium.

6. Responses in Finite Plane

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1. Asymptotic Behavior Analysis at

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At

,

 

(

)

 

 

(

)

 

,

thus

the temperature ̅(

) of

the finite

medium of length

 

is given by:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

̅(

 

)

 

 

 

 

 

( )

(

) ̅( ).

 

 

 

 

 

 

 

(63)

The transfer function (

 

) allows the analysis of the influence of the medium finite

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

character

on the

temperature

at

 

 

 

 

 

. As

such, let the change of variable

 

 

 

√ ⁄ .

Considering the definitions in (Para 2.) and (Eq. 60, 61), as a start the following is verified: if then , as ( ) , thus ( ) , accordingly it is found that:

 

 

 

 

 

(

)

 

 

( )

 

(64)

which is a result similar to what was found in a semi-infinite medium at

.

Now consider when

then

, as

(

)

 

, thus:

 

(

)

 

 

, accordingly it is found that:

 

 

 

 

 

 

 

 

 

 

 

 

√ ⁄

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

 

 

( )

 

(65)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

√ ⁄

Once again, considering the definitions in (Para 2.) and (Eq. 60, 61), the (Eq. 65) is rewritten as:

(

)

 

.

(66)

 

Complimentary Contributor Copy

110

Riad Assaf, Roy Abi Zeid Daou, Xavier Moreau et al.

 

 

Thus for high instances, corresponding to low frequencies (i.e. ), the asymptotic behavior of a finite medium is of capacitive type characterized by an integrator of order . It is different than the behavior in a semi-infinite medium characterized by a fractional

integrator of order

.

 

 

 

 

For low

instances, corresponding to

high

frequencies, when

then

, as

(

)

, thus:

 

 

 

 

 

 

(

)

( )

 

(67)

Accordingly an asymptotic fractional order behavior appears when

between the

input flux and the temperature at the boundary where the flux is applied; in fact, it is the same result that appears in the semi-infinite medium.

6.2. Asymptotic Behavior Analysis for

For

high

instances,

corresponding

 

 

to

 

 

low

frequencies,

when

then

 

(

)

, thus:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

 

 

)

 

 

 

 

 

 

 

 

 

(68)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same asymptotic behavior applies as at

 

 

 

. It is of capacitive type characterized

by an integrator

of order

; it is different than the

behavior in a

semi-infinite medium

characterized by a fractional integrator of order

.

 

 

 

 

 

 

 

 

 

 

 

For

low

instances, corresponding

to

 

high

frequencies,

when

then

,

as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

√ ⁄

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

thus

 

(

)

 

 

 

 

 

 

; it

is resolved introducing (Eq.

61)

a

 

 

 

 

 

 

 

 

 

 

 

 

 

√ ⁄

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

relation between

and

; accordingly:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

 

)

 

 

 

 

 

 

 

 

 

 

(69)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

then,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

 

 

 

 

 

 

 

 

 

 

( )

 

 

 

(70)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is the same asymptotic behavior as it appears in a semi-infinite medium.

6.3. Frequency Response Analysis at

Now that the mathematical model is established, frequency domain analyses (

)

can be done. The resulting transfer function (

) is the concatenation of four cascading

Complimentary Contributor Copy

From the Formal Concept Analysis to the Numerical Simulation …

111

 

 

blocks as shown on the (Figure 10) and represented in the (Eq. 58-60). When the study is on

the boundary where the flux is applied,

, the transfer function is expressed by:

 

 

 

(

)

(

) (

) (

)

(71)

with (

)

, then

(

) reduces to::

 

 

 

 

 

 

(

)

(

) (

)

(72)

Bode diagrams of the classic fractional integrator of order 0.5 in a finite aluminum

medium are represented in Figure 11.

 

 

 

The frequency response study of the function (

) allows

understanding

the

influence of the finite character of the medium on the temperature at

. Actually Figure

12 represents Bode diagrams of this transfer for three different values of

*

+

in a finite aluminum medium.

 

 

 

Gain (dB)

Phase (deg)

40

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

-40

 

 

 

 

 

 

 

 

 

 

 

-80

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

-120

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

10

10

10

10

10

10

10

10

10

10

10

0

 

 

 

 

 

 

 

 

 

 

 

-45

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

-90

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

10

10

10

10

10

10

10

10

10

10

10

Frequency (rad/s)

 

 

Figure 11. Bode diagrams of

(

) in a finite medium at

.

Two asymptotic behaviors clearly appear:

 

 

 

 

 

 

 

At the low frequencies, a fractional integration behavior of order

prevails. Actually,

 

 

, (

)

.

 

/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{ |

(

 

)|

.

 

/

 

 

(73)

 

 

 

 

 

 

 

 

 

 

 

( (

 

))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complimentary Contributor Copy

112

Riad Assaf, Roy Abi Zeid Daou, Xavier Moreau et al.

 

 

t the

high frequencies, a proportional

behavior prevails. Actually,

 

 

,

 

(

)

 

 

 

 

 

 

{

| (

)|

(74)

 

 

( (

))

 

 

 

The transitional zone between the two asymptotic behaviors is four decades wide and it is centered on the transitional frequency .

Gain (dB)

80

40

0

1

10

100

Phase (deg)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

45

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

-45

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

-90

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

10

10

10

10

10

10

10

10

10

10

10

Frequency (rad/s)

Figure 12. Bode diagrams of of (

) for

*

+ .

Now it is time to study the influence of each of the three cascading blocks on the global transfer function ( ). For this purpose, for and , Figure 13 visualizes the contribution of each block to the global response in a finite aluminum medium.

Two asymptotic behaviors clearly appear:

At the low frequencies, an integration behavior of order prevails. Actually,

, (

)

 

 

|

(

)|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{

( (

))

 

 

 

 

(75)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the high frequencies, a fractional integration behavior of order

prevails. Actually,

 

 

, (

)

.

 

/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complimentary Contributor Copy

From the Formal Concept Analysis to the Numerical Simulation …

113

 

 

 

 

 

 

 

{ | (

)| .

 

/

 

 

(76)

 

( (

))

 

 

 

 

 

 

 

 

 

 

Here also, the transitional zone between the two asymptotic behaviors is four decades wide and it is centered on the transitional frequency .

Gain (dB)

Phase (deg)

40

0 -40

-80

-120

-7

-6

-5

-4

-3

-2

-1

10

10

10

10

10

10

10

45

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

-45

 

 

 

 

 

 

 

-90

 

 

 

 

 

 

 

-135

-7

-6

-5

-4

-3

-2

-1

10

10

10

10

10

10

10

Frequency (rad/s)

H(0,jw,1m)

H0I0.5(0,jw)

F(0,jw,1m)

G(0,jw,1m)

100 101

H(0,jw,1m)

H0I0.5(0,jw)

F(0,jw,1m)

G(0,jw,1m)

100 101

Figure 13. Bode diagrams of (

)

( ) (

) and (

).

For different values of

*

+

, (Figure 14 represents the respective Bode

diagrams in a finite aluminum medium illustrating the translation of the transitional zone towards the high frequencies when decreases.

Gain (dB)

Phase (deg)

40

0

-40

-80

-120 10-7

0

-45

-90

-135 10-7

1

10

100

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

1

10

100

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

 

 

 

 

Frequency (rad/s)

 

 

 

 

 

Figure 14. Bode diagrams of (

) for

*

+ .

Complimentary Contributor Copy

114

Riad Assaf, Roy Abi Zeid Daou, Xavier Moreau et al.

 

 

For different values of * + , Figure 15 represents respectively ( ) in Black-Nichols plane in a finite aluminum medium.

6.4. Frequency Behavior Analysis for

 

For

,

(

)

. Thus it is interesting

to begin with the study

of its

frequency behavior in order to understand its influence on the global response (

).

(Eq. 56-59) reformulate the expression of the third block:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)√ ⁄

(

 

)√ ⁄

 

 

 

 

 

 

 

 

(

)

 

 

 

 

 

 

 

 

 

 

 

 

 

(77)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

√ ⁄

 

 

√ ⁄

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 represents Bode diagrams of the transfer of

(

) for a finite aluminum

medium of length

 

 

and for four different values

 

of the temperature sensor position,

let

*

+

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two behaviors clearly appear:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the low frequencies,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

 

{

 

| (

(

 

 

 

 

)|

(78)

 

 

 

 

 

 

 

 

 

 

(

 

 

 

 

))

 

Gain (dB)

40

1

20

 

10

 

 

 

100

0

-20

-40

-60

-80

-100

-120

 

 

 

 

 

 

 

-270

-225

-180

-135

-90

-45

0

45

Phase (deg)

Figure 15. Black-Nichols plots of (

) for

*

+

Complimentary Contributor Copy

From the Formal Concept Analysis to the Numerical Simulation …

115

 

 

Gain (dB)

Phase (deg)

40

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

-40

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

-80

 

5

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

-120

-5

-4

-3

-2

-1

0

1

2

10

10

10

10

10

10

10

10

45

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

-45

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

-90

 

5

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

-135

-5

-4

-3

-2

-1

0

1

2

10

10

10

10

10

10

10

10

Frequency (rad/s)

Figure 16. Bode diagrams of

(

 

) for

*

 

 

+

.

At the high frequencies,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

(

 

)|

.

 

 

/

 

(

)

 

{

 

(79)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

(

 

))

.

 

 

/

 

 

 

 

 

 

 

 

In order to make the analysis easier, a special frequency

 

is introduced; it is defined as:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

| (

 

 

)|

⁄√

 

 

 

 

 

 

 

(80)

The frequency

decreases when

increases. This is why, for a given frequency , the

gain and the phase are as smaller as is big as it is evident in Figure 16.

Now it is time to study the influence of each of the four cascading blocks on the global transfer function ( ). For this purpose, for and , Figure 17 visualizes the contribution of each block to the global response in a finite aluminum medium.

Three behaviors clearly appear:

At the low frequencies, an integration behavior of order prevails similar to the one

found at

. Actually,

 

, (

)

 

 

 

 

 

 

 

 

 

| (

 

)|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{

 

 

(81)

 

(

(

))

 

 

 

 

 

 

 

 

 

 

 

 

 

Complimentary Contributor Copy

116

Riad Assaf, Roy Abi Zeid Daou, Xavier Moreau et al.

 

 

Gain (dB)

Phase (deg)

40

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H(5mm,jw,1m)

 

 

 

 

-40

 

 

 

 

 

H I0.5(0,jw)

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

-80

 

 

 

 

 

F(0,jw,1m)

 

 

 

 

 

 

 

 

 

 

G(5mm,jw,1m)

 

 

 

 

-120

-7

-6

-5

-4

-3

-2

-1

0

1

2

10

10

10

10

10

10

10

10

10

10

45

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

-45

 

 

 

 

 

 

 

 

 

 

-90

 

 

 

 

 

 

 

 

 

 

-135

 

 

 

 

 

 

 

 

 

 

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

 

 

 

 

 

Frequency (rad/s)

 

 

 

 

 

Figure 17. Bode diagrams of

(

)

( )

(

) and

(

).

At the medium frequencies, a

fractional

integration

behavior of

order

prevails.

Actually,

, (

)

(

)

 

 

 

 

 

 

 

 

{ |

(

)|

.

 

 

/

 

 

 

 

 

 

 

(82)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

(

))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the high frequencies, a behavior identical to the one in the semi-infinite medium

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

prevails. Actually,

,

(

)

 

(

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{

| (

 

)| .

 

/

 

 

 

 

.

 

 

/

 

 

(83)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( (

 

))

 

 

 

 

 

 

.

 

/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 represents Bode diagrams of the transfer of

(

 

 

) for a finite aluminum

medium of length

and for four different values

of the temperature sensor position,

let

*

+

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a finite aluminum medium of length

 

 

 

 

and for four different values of the

temperature

sensor

position,

let

*

 

+

 

 

,

Figure 19

represents respectively

(

) in Black-Nichols plane.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complimentary Contributor Copy

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]