Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3703.pdf
Скачиваний:
9
Добавлен:
15.11.2022
Размер:
11.37 Mб
Скачать

98

Riad Assaf, Roy Abi Zeid Daou, Xavier Moreau et al.

 

 

In both cases, for a semi-infinite medium the transfer ( ) is the same.

4. Responses in the Semi-Infinite Plane

4.1. Asymptotic Behavior Analysis at

At

, (

)

; thus the transfer function

(

) becomes:

 

 

 

 

 

 

(

)

( )

 

(16)

which asymptotic behaviors are given by:

 

 

 

 

 

 

 

 

{

(

)

(

)

(17)

 

 

 

(

)

(

)

 

 

 

 

 

 

The fractional integration behavior of order

between the input flux ̅( ) and the

temperature

̅(

) is at mid-way between an integration behavior of order

which

is

characteristic of a capacitive behavior, and a proportional behavior (integration of order

)

characteristic of a resistive behavior.

 

 

 

 

 

 

4.2. Asymptotic Behavior Analysis at

The analysis of the influence of

(

) on

the transfer function (

) through its

asymptotic behaviors leads to:

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

 

 

 

 

 

 

 

{

 

 

.

 

 

/

 

 

(18)

(

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence,

 

 

 

 

 

 

 

 

 

 

 

(

)

 

(

)

 

 

 

{

 

 

.

 

 

/

.

(19)

(

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same asymptotic behavior is noticed at any place of the semi-infinite medium.

4.3. Frequency Response Analysis at

The frequency response (

) is given by:

(

)

( ) (

).

(20)

Complimentary Contributor Copy

 

From the Formal Concept Analysis to the Numerical Simulation …

99

 

 

 

 

 

 

 

 

 

At

, the block (

)

thus the transfer function (

) becomes:

 

 

 

(

)

(

).

 

(21)

The gain and the phase of the transfer function ̅(

 

 

) are:

 

 

 

 

{

| (

)|

 

.

 

(22)

 

 

 

 

 

 

 

( (

))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bode diagrams and Black-Nichols diagram of (

 

 

) are represented in (Figure 3) and

(Figure 4), respectively.

4.4. Frequency Response Analysis at

At

, the 3rd block

(

 

 

) becomes:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

 

.

/

 

 

 

 

(23)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Knowing that

.

 

/

 

.

 

/

 

, the block (

) is written as:

 

 

 

 

 

 

 

 

 

(

)

.

 

 

/

.

 

/

(24)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

thus the gain and the phase of this block are:

 

0

 

 

 

 

 

 

 

 

 

 

 

 

-40

 

0

 

 

 

 

 

 

 

 

 

(dB)

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-80

 

5

 

 

 

 

 

 

 

 

 

Gain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

-120

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

-160

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

 

10

10

10

10

10

10

10

10

10

10

10

 

0

 

 

 

 

 

 

 

 

 

 

 

(deg)

-45

 

0

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

Phase

-90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

-135

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

-180

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

 

10

10

10

10

10

10

10

10

10

10

10

 

 

 

 

 

 

 

Frequency (rad/s)

 

 

 

 

 

Figure 3. Bode diagrams of (

) for different positions of the temperature sensor in a semi-infinite

aluminum medium.

 

Complimentary Contributor Copy

100

Riad Assaf, Roy Abi Zeid Daou, Xavier Moreau et al.

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

20

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

0

 

 

 

 

 

 

10

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

-20

 

 

 

 

 

 

 

(dB)

-40

 

 

 

 

 

 

 

Gain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-60

 

 

 

 

 

 

 

 

-80

 

 

 

 

 

 

 

 

-100

 

 

 

 

 

 

 

 

-120

 

 

 

 

 

 

 

 

-270

-225

-180

-135

-90

-45

0

45

 

 

 

 

Phase (deg)

 

 

 

Figure 4. Black-Nichols plots of

(

)

for different

positions of the sensor in a

semi-infinite

aluminum medium.

 

 

 

 

 

 

 

 

 

 

{

|

(

)|

.

 

 

 

/

 

 

 

 

 

 

 

 

 

 

.

(25)

 

(

(

))

 

 

.

 

 

/

 

 

 

 

 

 

 

-At the low frequencies, the behavior of this block is similar to the one observed

when :

{

| (

)|

(

(

 

-At the medium frequencies, especially frequency:

{| (

)|

(

(

(

))

))

.

(26)

 

 

when

 

, the cutoff

 

).

(27)

-At the high frequencies, the behavior of this block is like:

{

|

(

)|

.

(28)

(

(

))

 

 

 

Complimentary Contributor Copy

From the Formal Concept Analysis to the Numerical Simulation …

101

 

 

Now, we can look deeply into the transfer function:

 

̅(

)

 

 

 

.

 

/

 

 

 

 

.

 

 

 

 

/ .

(29)

 

 

 

 

 

 

 

 

 

(

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The asymptotic behaviors of

(

 

) are found to be:

 

 

 

 

 

 

 

 

 

 

-

At low frequencies:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{

 

|

(

)|

 

 

 

 

 

 

.

 

 

 

(30)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( (

))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The behavior is similar to the one observed when

.

 

 

 

 

 

 

-

At high frequencies:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

(

)|

 

 

 

 

 

 

 

 

 

.

 

 

 

 

/

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

(31)

 

( (

 

))

 

 

(

 

 

 

 

.

 

 

 

/ )

 

 

 

 

 

 

 

 

 

 

 

 

 

Bode diagrams and Black-Nichols plots in a semi-infinite aluminum medium are merged

in Figure 3 and Figure 4 with various values of

. The fractional integration behavior of

order

is present all over the frequency range for

, it disappears gradually at higher

frequencies when increases.

 

4.5. Time Response Analysis

When analyzing this system in time domain, a special attention should be taken. In fact, because of the presence of the exponent in the expression of ( ), the inverse Laplace

transfer in

simulation is not always possible when taking into consideration special inputs

̅( ). (Eq.

32) shows the inverse Laplace transform

* + of the output temperature.

 

 

( )

*̅(

)+

* (

) ̅( )+

(32)

Nevertheless, some time domain simulations could be made without using approximations. In fact, three time domain simulations for three well known input types are proposed: the impulse, the step and the sinusoidal inputs.

4.5.1. Impulse Response

The impulse response is obtained by substituting ( ) by its value shown in (Eq. 12) and ̅( ) by * ( )+ . Accordingly, the impulse response is given by:

Complimentary Contributor Copy

102

Riad Assaf, Roy Abi Zeid Daou, Xavier Moreau et al.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

(

 

 

√ ⁄ )

.

 

 

√ ⁄

/

(33)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Knowing that (Battaglia, 2008):

 

 

 

 

 

 

 

 

( )

 

.

 

 

/

 

 

(34)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

, the impulse response can be presented as follows:

( )

( )

 

 

 

 

 

 

 

Figure 5 shows the outputs for the impulse at different locations of

of in a semi-infinite aluminum medium.

 

 

 

(35)

and different values

4.5.2. Step Response

The step ( ) response of magnitude shown in (Eq. 12) and ̅( ) by * ( )+

is obtained by substituting ( ) by its value . Accordingly, the step response is given by:

 

 

 

 

(

)

 

(

√ ⁄

 

 

 

 

 

 

 

1.4

x 10-5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

1.2

 

 

 

 

 

 

1

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

(°C)

1

 

 

 

 

 

 

50

 

 

 

 

 

 

 

100

Variation

0.8

 

 

 

 

 

 

 

Temperature

0.4

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

0

0

10

20

30

40

50

60

 

 

 

 

(a):

Time (s), T0=0°C

 

 

Figure 5. Impulse responses of (

) for (a)

 

and (b)

and

.

 

 

 

Knowing that (Battaglia, 2008):

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

/

 

 

 

 

 

 

 

 

 

)

 

.

 

√ ⁄

/

 

(36)

 

 

 

 

 

 

 

 

1.4

x 10-5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1.2

 

 

 

 

 

10

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

(°C)

1

 

 

 

 

 

80

 

 

 

 

 

 

 

Variation

0.8

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature

0.6

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

0

0

20

40

60

80

100

 

 

 

(b): Sensor position x (mm), T0=0°C

 

 

 

 

 

 

 

and

;

(

)

 

. /

 

 

(37)

 

 

 

 

 

 

Complimentary Contributor Copy

 

From the Formal Concept Analysis to the Numerical Simulation …

103

 

 

 

where

( ) is the complementary error function and

, the step response can be

presented as follows:

 

 

 

1

 

 

 

 

 

 

 

0

 

 

 

0.9

 

1

 

 

 

0.8

 

5

 

 

 

 

10

 

 

 

 

 

 

 

(°C)

0.7

 

50

 

 

 

100

 

 

 

 

 

 

Variation

0.6

 

 

 

 

0.5

 

 

 

 

Temperature

 

 

 

 

0.4

 

 

 

 

0.3

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

0.1

 

 

 

 

 

0

0

30

60

90

 

 

 

(a): Time (s), T0=0°C, Flux=2000W/m2

 

Figure 6. Step responses of

(

) for (a)

(b)

and

 

.

 

(

)

( √

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

0.9

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

(°C)

0.7

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variation

0.6

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

Temperature

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

0.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

0

0

25

50

75

100

125

150

175

200

 

 

 

 

(b): Sensor position x (mm), T0=0°C, Flux=2000W/m2

 

 

 

 

 

 

 

 

 

and

 

; and

(

)

 

 

 

.

/)

 

 

 

 

(38)

 

 

 

 

 

 

 

 

Figure 6 shows the outputs for the step function at different locations of

and different

values of in a semi-infinite aluminum medium.

 

 

4.5.3. Stationary Harmonic Response

 

 

The entry at

is supposed to be

 

 

 

( )

( ).

(39)

The system being supposed linear, the expression of the output temperature is given by:

(

)

| (

)|

.

( (

))/

(40)

then replacing (

) by its value in (Eq. 29)

 

 

 

 

 

 

(

)

.

 

/

(

(

.

 

/ ))

(41)

 

 

 

 

 

 

Let

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

(42)

Complimentary Contributor Copy

104

Riad Assaf, Roy Abi Zeid Daou, Xavier Moreau et al.

 

 

Then

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

.

/

 

.

 

/

 

(43)

 

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1e-006

 

20

 

 

 

 

 

 

 

 

 

 

 

 

1e-005

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(°C)

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variation

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature

5

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-100

1

2

3

4

5

6

7

8

9

10

11

12

13

 

 

 

 

 

 

Time (hour), T0=0°C, Flux=2000W/m2

 

 

 

 

 

Figure 7. Harmonic responses of

(

) for ( ⁄

)

*

 

 

 

 

+ and

.

At

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

.

 

 

/

 

.

 

 

 

 

/.

(44)

 

 

 

 

 

 

 

 

Figure 7 illustrates the outputs for a harmonic

function input for different

values of

( ⁄ ) *

+ and for

in a semi-infinite aluminum medium.

 

 

 

At

:

 

 

 

 

 

 

 

In order to make the analysis easier, let’s

consider

the

 

temperature at

as a

reference, thus we can write:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

 

 

 

 

(

).

 

 

 

 

 

(45)

Hence the temperature at

 

will be written as:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

)

 

 

 

 

 

 

 

 

 

 

 

(

 

).

(46)

 

 

 

 

 

 

 

For illustration purposes, let

 

 

with

 

 

. Figure 8 shows the outputs for

a harmonic function input for different values of

 

*

 

 

 

 

+ in a semi-

infinite aluminum medium.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complimentary Contributor Copy

From the Formal Concept Analysis to the Numerical Simulation …

105

 

 

Figure

8. Harmonic

responses of

(

) when

, for ( )

, ( )

,

( )

, ( )

, ( )

and (

)

.

 

 

t

x

0

L

Figure 9. Finite unidirectional plane of thickness L.

Complimentary Contributor Copy

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]