Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3703.pdf
Скачиваний:
9
Добавлен:
15.11.2022
Размер:
11.37 Mб
Скачать

Fractional Calculus in Mechanics of Solids

177

 

 

Using the Vi´ete theorem, from (41) and (46) we have

t1 γ t2 γ = τ1−γ τ2−γ (1 + n1 + n2),

τ1−γ τ2−γ = t1 γ t2 γ (1 − m1 − m2),

or

 

t1−γ t2−γ

= 1 + n1

+ n2,

(47)

 

−γ

−γ

 

τ1

τ2

 

 

 

τ1−γ τ2−γ

= 1 − m1

− m2.

(48)

t−γ t−γ

 

1

2

 

 

 

 

Formulas (47) and (48) are generalized easily over the case of the operators defined by relationships (23) and (24). In this case, they look like as follows:

 

n

 

 

γ

 

 

 

 

 

 

 

 

 

i=1

 

Q tj

 

 

 

i=1

τi

 

 

 

n

 

 

 

 

 

 

= 1 +

X

(49)

 

n

 

 

 

 

 

 

Q

 

 

 

 

 

 

j=1

 

 

 

 

 

 

 

n

 

 

γ

 

 

 

 

j=1 tj

 

 

 

n

 

Q τi

 

 

 

j=1

 

 

 

 

 

 

= 1

 

X

(50)

 

n

 

 

 

 

 

 

 

Q

 

 

 

 

 

 

 

i=1

 

 

 

 

 

 

 

4.Calculation of the Main Viscoelastic Operators

4.1. The Case of Constant Operator of the Bulk Extension-Compression e

K

For the majority of viscoelastic materials, the bulk modulus remains a constant value during the process of mechanical deformation, i.e.,

1 −e

= 1 − 2ν,

(51)

E

E

 

e

where νis the nonrelaxed Poisson’s ratio, and νe is Poisson’s operator. From (51) with due account for (19) we have

νe = ν+

1

(1 − 2ν) νε 3γ εγ ) .

(52)

2

Further we will require the operators (1 + νe)−1 and (1 − νe)−1, which are determined considering (52) according to the above developed procedure, i.e.,

1 + ν+ 21 (1

− 2ν) νε 3γ

ε )

 

1 + ν

− 3

 

 

 

1

 

=

1

1

B

γ (t1γ ) ,

(53)

 

 

γ

 

Complimentary Contributor Copy

178

Yury A. Rossikhin and Marina V. Shitikova

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − ν21 (1 − 2ν) νε 3γ

ε )

 

1 − ν

3

 

 

 

1

 

=

1

1 + D

 

γ (t2γ ) ,

(54)

 

 

γ

 

 

where B, tγ1 , and D, tγ2 are yet unknown constants.

Multiplying the operators in the right-hand sides of Eqs. (53) and (54), respectively, by the denominator of the fraction in their left-hand side parts and considering (21), we are led to the following equations:

2

 

 

 

1 + ν

 

 

τε

− t1

3γ ε

 

 

2

 

1 + ν

τε − t1

3γ

 

 

 

1

 

(1 − 2ν) νε

 

1

 

B

 

τεγ

 

 

 

γ )

 

B 1

 

1

 

(1 − 2ν) νε

 

t1γ

 

 

 

(t1γ )

= 0,

 

 

 

 

 

 

 

γ

γ

 

 

 

 

 

 

 

 

 

 

 

γ

γ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(55)

 

 

1 (1 − 2ν) νε

»

 

 

 

τεγ

 

γ

 

 

»

 

1 (1 − 2ν) νε

t2γ

 

γ

) = 0.

 

 

 

 

 

 

 

 

3

γ

ε

 

 

 

 

 

 

 

 

 

 

 

 

 

γ

2

(56)

2 1 − ν

 

 

 

τεγ − tγ

 

 

 

2

 

 

 

1 − ν

τεγ

− tγ

 

 

 

 

 

1 + D

 

 

 

 

 

) + D 1 +

 

 

 

 

 

 

 

 

 

 

3

 

(t

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

Vanishing to zero the terms in square brackets in (55) and (56), we could determine the unknown constants

 

 

 

 

B =

 

 

 

 

 

 

(1 − 2νε

 

 

 

 

 

 

=

τεγ − t1γ

,

 

 

 

 

 

(57)

 

 

 

 

 

 

 

 

2(1 + ν) + νε(1 − 2ν)

 

 

 

τεγ

 

 

 

 

 

 

 

 

 

 

 

 

 

t−γ

= τ −γ

 

 

1 +

 

(1 − 2ν) νε

 

 

,

 

 

 

tγ

=

 

τεγ

,

 

 

(58)

 

 

 

 

 

2(1 + ν)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

ε

 

 

 

 

 

 

 

 

 

1

 

 

A

 

 

 

 

 

 

 

 

D =

 

 

 

 

 

 

(1 − 2νε

 

 

 

 

 

 

=

 

 

τεγ

− t2γ

,

 

 

 

(59)

 

 

 

 

 

 

 

 

 

 

 

)

 

 

 

 

 

 

 

 

 

2(1

ν

 

)

 

ν (1

 

 

 

 

τ γ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ε

 

 

 

 

 

 

 

ε

 

C

 

 

 

 

 

 

 

 

2

 

 

 

 

ε

 

 

2(1 − ν)

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

t−γ

= τ −γ

 

 

1

 

 

(1 − 2ν) νε

 

 

,

 

 

 

tγ =

 

τεγ

,

 

 

(60)

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A =

2(1 + ν) + νε(1 − 2ν)

> 1,

C =

2(1 − ν) − νε(1 − 2ν)

< 1.

 

 

 

 

2(1 + ν)

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

2(1 − ν)

 

 

Now we could calculate operators

and

λ. Really, considering (19) and (53), (57),

(58), we find

 

2(1 e

 

 

 

 

 

 

 

 

 

 

 

 

 

µ

 

 

e

 

 

 

1 + ν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

3

 

 

 

µ =

 

E

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

γ

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

γ

 

 

 

 

 

 

=

 

 

 

 

 

 

1

 

 

νε

γ

ε )

 

 

 

 

 

 

 

 

1

 

B

 

 

γ (t1 ) .

(61)

 

 

e

 

+ ν) 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

operators entering in (61) and considering (21), we have

 

 

Multiplying

 

e

 

 

 

 

 

 

 

 

 

t1γ 3γ

ε

 

 

 

 

 

 

 

 

 

 

 

 

 

t1γ

3γ 1

 

 

ε τεγ

τεγ

 

 

 

 

 

 

ε τεγ

tγ

µ = µ 1

 

ν 1

 

B

 

 

 

 

 

 

 

 

 

 

γ )

 

B 1 + ν

 

1

 

 

 

 

(t ) , (62)

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where µis the nonrelaxed shear modulus.

But according (57)

1 − Bτεγ εγ − tγ1 )−1 = 0,

Complimentary Contributor Copy

Fractional Calculus in Mechanics of Solids

179

 

 

and

1 + νε τεγ − t1γ

 

=

2(1 + ν)A,

B

 

 

t1γ

 

 

ε

 

and finally relationship (62) with due account for (63) takes the form

µ = µ

1 − 2(1 + ν)A

3γ

A

.

 

 

 

 

τ

γ

e

 

ε

 

 

ε

 

 

 

 

 

 

 

 

To define operator e1, let us use the following formula:

λ

e

(1 − 2 e e

 

 

 

1 −e

3

e

λ =

E ν

 

=

1

E

1

E

.

 

ν)(1 + ν)

 

3

e

 

1 + ν

 

e

e

 

 

 

e

(63)

(64)

(65)

The first operator in the right-hand side of (65), according to (51), is a constant, while the second one within an accuracy of a constant coincides with formula (64). Thus,

 

λ = 3 1

 

 

3 1 + ν1 − 2(1 + ν)A 3γ

A

 

,

 

e

1

 

 

E

 

 

 

 

 

1 E

 

 

 

 

 

 

 

ε

 

 

 

 

τεγ

 

or

 

 

 

 

 

 

 

 

 

 

2(1 + ν)A

3γ

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

λ = λ

 

 

1 +

(1 − 2νε

 

 

 

 

τεγ

 

,

 

 

 

(66)

where λis the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nonrelaxed magnitude of the second Lame parameter.

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In conclusion of this Subsection, we will calculate the operator

 

 

 

 

 

 

 

 

 

 

 

1

e

ν2

= 2

 

 

1 + ν +

1

ν

,

 

 

 

 

(67)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

E

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

e

 

 

e

 

 

 

 

 

 

 

which within an accuracy of a constant coincides with the operator of cylindrical rigidity and is of frequent use in the problems dealing with mechanical behavior of thin bodies.

Substituting (19), (53), and (54) in (67), multiplying the operators involving in the enumerated relationships and using (21), we obtain

 

1 −eν2

 

 

 

1 − ν2

 

− 3

 

− 3

 

 

 

 

E

 

 

 

E

 

 

 

 

 

γ

 

 

 

 

γ

 

 

where

e

=

 

 

1

 

 

m1

γ (t1 ) m2

γ (t2 ) ,

(68)

 

3

 

B(1 − ν)

 

 

 

 

1

 

D(1 + ν)

 

 

 

m1 =

 

,

 

m2 =

 

.

(69)

 

2

 

 

 

2 (1 − 2ν)

 

 

 

(1 − 2ν)

 

 

 

 

 

In order to find an operator reverse to the operator (68), let us represent it in the form

 

1 − ν2

=

1 − ν2

1

+ n

 

γ ) + n

 

γ ) ,

(70)

 

3γ

3γ

 

Ee

 

 

 

E

 

 

 

1

1

2

2

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where τ1γ , τ2γ , and n1, n2 are yet unknown constants which are determined from Eqs. (44) and (45). It is convenient to rewrite these equations in another form. Thus, the equation for defining the values τiγ has the form

 

 

x

 

 

x

 

 

1 + m1

 

 

+ m2

 

 

= 0, x = τiγ

(i = 1, 2),

(71)

γ

− x

γ

 

 

t1

 

t2

− x

 

 

Complimentary Contributor Copy

180

Yury A. Rossikhin and Marina V. Shitikova

 

 

or with due account for (69)

1 +

3

 

B(1 − ν)

 

 

 

x

 

+

1 D(1 + ν) x

= 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 (1 − 2ν) (t2γ − x)

 

2 (1 − 2ν) (t1γ − x)

 

 

 

 

A set of equations for finding n1 and n2 is the following:

 

 

 

 

 

 

 

tγ

 

n1 +

 

 

tγ

 

n2 = 1,

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

τ

γ

γ

 

τ

γ

−t

γ

 

 

 

 

 

1

−t

1

 

 

 

2

1

 

 

 

 

 

 

 

 

t2γ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t2γ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τ1γ −t2γ

n1 +

τ2γ −t2γ

n2 = 1.

 

(72)

(73)

It could be shown that if substitute τεγ instead of x in (71) or (72) , then the following identity could be obtained:

τεγ τεγ

1 ≡ −m1 tγ1 − τεγ − m2 tγ2 − τεγ .

In order to find the second root of Eq. (71) or (72), let us rewrite it in the form

(1 − m1 − m2) x2 − (tγ1 + tγ2 − m1tγ2 − m2tγ1 ) x + tγ1 tγ2 = 0.

Due to the Vi´ete theorem, if the first root is x1 = τ1γ = τεγ , then the second root x2 satisfies the relationship

τεγ x2 =

t1γ t2γ

.

 

Calculations show that

1 − m1 − m2

 

 

t1γ t2γ

τε

1 − m1 − m2 = 1 − νε .

(74)

(75)

= τ1γ

(76)

(77)

But τεγ (1 − νε)−1 = τσγ , and from (77) it follows that x2 = τ2γ = τσγ . Substituting the found τ1γ = τεγ and τ2γ = τσγ in the set of Eqs. (73), we obtain

 

 

 

 

 

2(1−ν)

n1

 

2(1−ν)

n2

= 1,

 

 

 

 

 

 

 

 

 

(1−2ν

 

 

νσ

 

 

 

 

 

 

 

 

 

 

 

2(1+ν)ε

 

 

2 1+ν

 

 

 

 

 

 

(78)

 

 

 

 

 

 

 

 

n1 +

3

νσ

n2

= 1,

 

 

 

 

 

 

 

 

 

(1−2νε

 

 

 

 

 

whence it follows

 

 

(1 − 2ν)2νε

 

 

 

 

 

 

 

σ

 

 

 

 

 

 

 

n1 =

,

 

n2 =

 

.

 

 

(79)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4(1 − ν2 )

 

 

 

 

 

 

4(1 − ν2

)

 

 

 

 

Considering aforesaid, we have

 

 

 

 

3

 

 

 

 

4(1 − ν2

 

3

 

 

Ee

 

E

 

 

 

4(1 − ν2 )

 

 

 

 

 

 

)

 

1 − ν2

=

1 − ν2

1

+

(1 − 2ν)2νε

 

γ ) +

σ

 

 

 

 

γ ) . (80)

 

e

 

 

 

 

 

 

 

 

 

 

γ

 

ε

 

 

 

 

 

γ

σ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, we obtain two important mutually reciprocal operators (68) and (80) which are widely used in different applications.

Besides, two useful formulas have been found

t1γ t2γ = τεγ τσγ (1 − m1 − m2),

(81)

t1γ (1 − m2) + t2γ (1 − m1) = (τεγ + τσγ ) (1 − m1 − m2).

(82)

Complimentary Contributor Copy

Fractional Calculus in Mechanics of Solids

181

 

 

4.2.The Main Case

In the previous Subsection we have not take the second, or bulk, viscosity into account, in spite the fact that there are numerous evidence of its existence in scientific literature [36, 39, 74, 75].

One of the first papers in the field was published by Meshkov and Pachevskaya [39], wherein the attempt for considering the influence of the bulk relaxation on the internal friction phenomenon was carried out on the example of longitudinal harmonic vibrations of a three-dimensional hereditary elastic rod under the conditions of homogeneous deformation. A fractional exponential function has been used as a hereditary kernel. Investigation of the frequency dependence of the tangent of the phase shift between the stress and deformation, i.e., mechanical loss tangent, has revealed two peaks, namely, shear and bulk, in so doing the peak due to the shear deformation is five times larger than that resulting from the bulk deformation.

e

µ

e

 

 

 

 

ε1

 

γ

ε1

 

 

 

Assume that operators µ and K are given in the form

 

 

 

 

 

 

 

 

 

 

 

3

 

γ

 

 

 

e

= µ

 

 

1

 

 

ν

 

 

γ ) ,

,

(83)

 

 

 

1

νε2

 

γ

ε2

 

 

 

e

 

 

 

 

 

3

 

 

 

K = K

 

 

 

 

 

 

 

 

)

 

(84)

where νε1 = 1 − µ0µ1 = 1 − τεγ1τσ1γ , νε2 = 1 − K0K−1 = 1 − τεγ2τσ2γ , µ0 and µ, K0 and Kare relaxed and nonrelaxed shear and bulk moduli, respectively, τε1 and τσ1, τε2

and τσ2 are relaxation and retardation times, the subscript l relates to shear relaxation and the subscript 2 to bulk relaxation.

Starting from formulas (83) and (84), reciprocal operators have the form

µ1e = µ1 1 + νσ1 3γ σγ1) ,

1e = K−1 1 + νσ2 3γ σγ2) , K

where νσ1 = µµ0 1 − 1 = τσγ1τε1γ − 1, and νσ2 = KK0−1 − 1 = τσγ2τε2γ − 1. First we calculate the operator of compliance

 

 

J =

E =

3

 

 

 

3Kµ

e

= 3 µ + 3K .

 

 

 

e

1

 

 

 

 

 

e

1 1

1

 

 

 

 

 

 

 

1 3K + µ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in (87) yields

 

 

 

 

 

e

 

e

 

 

 

Substituting (85) and (86) e

 

 

 

 

e e

 

 

 

 

 

 

3γ

σγ2) ,

 

J = J

1 + 3 µ

3γ σγ1) + 9 K

 

e

 

 

1 νσ1 E

 

 

 

 

 

1 νσ2 E

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3γ σγ1) + 3 (1 − 2ν) νσ2 3γ σγ2) .

 

J = J1 + 3 (1 + ν) νσ1

 

e

2

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

(85)

(86)

(87)

(88)

Let us consider longitudinal harmonic vibrations of a three-dimensional hereditary elastic rod under the conditions of homogeneous deformation when harmonic force acts infinitely long. If rod’s axis coincides with the z-axis, then its longitudinal strain is

εzz = p0J eiωt,

(89)

Complimentary Contributor Copy

182

Yury A. Rossikhin and Marina V. Shitikova

 

 

where p0 and ω are the amplitude and frequency of the external force. Let us introduce the following operators:

3γ+ iγ ) x(t) = Z−∞

3γ (−s/τi) x(t − s)ds,

 

 

 

 

t

 

 

 

 

 

 

+

 

Z−∞

(γ)

 

 

Iγ x(t) =

t

 

(t − s)γ−1

x(s)ds.

 

 

Then according to (13)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ

iωt

X

 

n

−γ(n+1)

γ iωt

3γ+

i

) e

=

 

(−1)

 

τi

 

I+e ,

 

 

 

n=0

 

 

 

 

 

but

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

X

 

 

 

 

(−1)nτi−γ(n+1) I+γ eiωt =

(−1)n(iωτi)−γ(n+1) eiωt,

n=0

 

 

 

 

 

n=0

 

 

 

 

(90)

(91)

(92)

and the sum in the right-hand side could be interpreted as an infinite decreasing geometrical progression with the denominator d = −(iωt)−γ . In other words,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− −

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eiωt

 

 

 

 

 

 

eiωt (−1)n(iωτi)−γ(n+1) =

 

(iωτi)−γ eiωt

 

 

 

 

 

 

 

 

 

 

 

1

[

 

(iωτi)−γ ]

=

1 + (iωτi)γ

,

 

 

 

 

 

 

n=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3γ+ iγ ) eiωt =

 

 

1

 

 

eiωt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + (iωτi)γ

 

 

 

 

 

 

 

 

æi−γ + æiγ

+ 2 cos ψ !

 

 

 

 

 

 

 

 

 

 

 

 

 

æi−γ + æiγ

+ 2 cos ψ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

æi−γ

+ cos ψ

 

 

 

 

 

 

 

 

 

 

 

sin ψ

 

 

iωt

 

 

 

 

 

 

 

 

=

1

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

e ,

(93)

where æi

= ωτi, and ψ =

πγ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering (93), the complex compliance J(iω) has the form

 

 

 

 

 

 

J(iω) = J

(ω) − iJ

 

(ω) =

3 J(2(1 + ν)

 

 

 

 

 

 

æσ1γ + æσγ1

+ 2 cos ψ

 

 

 

 

 

0

 

00

 

 

 

 

1

 

 

 

 

 

 

æσγ

1 + æε1γ

+ [1 + (æσ1ε1)γ ] cos ψ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

æσ2γ

+ æσγ2

+ 2 cos ψ

)

 

 

 

 

 

 

 

 

 

 

+ (1

 

 

)

æσγ

2 + æε2γ + [1 + (æσ2ε2)γ ] cos ψ

 

 

(

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

 

3

 

 

 

 

æσ1γ

+ æσγ1 + 2 cos ψ

 

 

 

 

 

 

 

 

 

æσ2γ

+

æσγ2 + 2 cos ψ

 

i

1

J

 

2(1 + ν)

[(æσ1

ε1)γ − 1] sin ψ

+ (1

 

 

)

[(æσ2

ε2)γ − 1] sin ψ

. (94)

 

 

 

 

 

 

Now knowing the value J(iω), it is possible to find the tangent of the mechanical loss angle characterizing the internal friction in a viscoelastic rod

tan δ =

J00

 

J0 .

(95)

Complimentary Contributor Copy

Fractional Calculus in Mechanics of Solids

183

 

 

Meshkov and Pachevskaya [39] considered a numerical example with ν= 0.3, µ0= K0/K= 0.8, τε1ε2 = 103, and ω = 1 in order to establish whether, in principle, a relaxation peak due to bulk deformation can occur. The ln æε2-dependence of tan δ and phase diagram for the compliance J00 = f (J0) were presented in [39] in Figures 1a and 1b, respectively, where the values of the fractional parameter γ were indicated by figures near the corresponding curves. The limiting value γ = 1 in Figure 1a of [39] indicates that the shear and bulk relaxations are described by the standard linear solid model, and it leads to clear separation of the two peaks. If the bulk and shear moduli have equal degrees of relaxation, they make unequal contributions to the total effect defined by Poisson’s ratio ν, namely: the shear peak being about 5.5 times larger than the bulk one. Reduction in γ corresponds to broadening of the relaxation spectrum [41], and the difference between the peaks vanishes. The value γ = 0.5 may be considered in this case to correspond to the lower limit for the bulk effect, i. e., bulk relaxation is not seen for all γ < 0.5, although it exists. The possibility of observing bulk relaxation is thus dependent not only on the ratio of the relaxation times for shear and bulk stresses, but also on the parameter that characterizes the width of the relaxation spectrum.

Now we calculate the operator

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

3e

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν =

3K − 2µ .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K + µ

 

 

 

We will proceed from the operator

2

 

e

 

e

 

3γ

ε2

 

 

 

13K + µ = (3K+ µ)

 

 

1 3γ ε1) − m2

 

 

 

 

 

 

 

e

 

 

 

 

 

1

 

m

 

 

γ

 

γ ) ,

where m

 

=

3

(1

 

 

, and m

 

=

3

(1

+ ν

 

 

 

 

1

 

 

e

 

ε1

 

 

2

 

 

 

 

 

 

ε2

 

 

 

Operator inverse to operator (97) has the form

 

 

 

 

 

 

 

3K + µ

= 3K+ µ

 

1 + n1 3γ (tσγ1 ) + n2 3γ (tσγ2 ) ,

 

 

 

 

e γ

 

−1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

γ

 

 

 

 

 

 

 

 

 

 

 

 

where the values tσ1

e

tσ2

are defined from the quadratic equation

 

(1 − m1 − m2)x2 − [τεγ1(1 − m2) + τεγ2(1 − m1)] x + τεγ1τεγ2 = 0,

(96)

(97)

(98)

(99)

while the values n1 and n2 are determined from the set of two equations with due account

for the magnitudes of tσγ

1 and tσγ

2 found from Eq. (99)

 

 

 

 

 

τεγ1

 

n1

+

τεγ1

 

n2

= −1,

 

 

 

 

τεγ1−tσγ 1

τεγ1−tσγ 2

 

 

(100)

 

τεγ2

 

 

 

 

τεγ2

 

 

 

 

 

 

 

 

 

 

n1

+

 

 

 

n2

= 1.

 

 

 

 

γ

 

γ

γ

 

γ

 

 

 

 

τε2

−tσ1

τε2

−tσ2

 

 

 

Then from (96) we find

 

 

 

 

 

 

 

 

 

 

 

 

2 ) , (101)

ν = ν1 − s1 3γ εγ1) + s2 3γ εγ2) 1 + n1 3γ (tσγ

1 ) + n2 3γ (tσγ

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

3Kνε2

 

 

 

 

 

 

νε1

 

s1 =

 

 

 

 

 

s2 =

 

 

,

 

 

 

.

 

3K− 2µ

 

 

3K− 2µ

 

Complimentary Contributor Copy

184

Yury A. Rossikhin and Marina V. Shitikova

 

 

 

 

 

 

 

 

 

Opening the brackets in (101) with due account for (21) yields

 

ν = ν1 + n1 + τεγ2

− tσγ1

τεγ1

− tσγ1

3γ

(tσ1)

 

e

 

s1n1tσγ1

 

s2n1tσγ1

 

γ

 

 

s1n2tγ

 

s2n2tγ

3γ

(tσ2)

 

+ n2 +

 

τεγ2

− tσγ2

τεγ1

− tσγ2

 

 

 

 

σ2

 

 

σ2

 

 

γ

 

1

 

τεγ2

− tσγ1

 

τεγ2

− tσγ2

3γ

ε2

 

s +

 

s1n1τεγ2

+

s1n2τεγ2

 

 

γ )

 

 

 

 

 

 

 

 

 

 

 

+ s2 +

s2n1τεγ1

 

 

 

 

 

s2n2τεγ1

 

 

 

γ

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

3γ

ε1) .

(102)

 

 

 

 

 

 

τεγ1 − tσγ

1

 

 

τεγ1 − tσγ

2

In order to find operator E, it is necessary to rewrite operator J in the form

 

 

 

 

 

 

 

J = J

 

 

 

1 + n

 

 

 

 

γ ) + n

 

γ

 

) ,

(103)

 

 

 

 

 

 

e

 

 

 

 

1

3

γ

 

 

 

σ1

 

 

 

2

 

γ

σ2

e

 

where n1 =

2

(1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

σ2.

3

 

 

 

 

3

+ νσ1 , and n1 =

3

(1

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then operator E takes the form

 

 

 

 

 

 

 

(tεγ1)

 

 

 

 

 

(tεγ2) ,

 

 

 

 

e

 

 

E = E

1

m1

 

 

γ

 

m2

γ

(104)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

γ

and

t

γ are determined from the following equation:

 

where values t

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ε1

 

 

 

εe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n1x

 

 

 

 

n2x

 

 

 

 

 

 

 

 

 

 

 

 

 

γ

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

=

 

1, x = tε i

(i = 1, 2),

 

or

 

 

 

 

τσγ1 − x

τσγ2 − x

 

 

(1 + n1 + n2)x2 − [τσγ1(1 + n2) + τσγ2(1 + n1)] x + τσγ1τσγ2 = 0,

 

 

(105)

and values m1 and m2 are defined from the set of equations

 

 

 

 

 

 

 

 

 

 

 

 

 

τ

γ

 

m1

+

 

 

τ γ

 

 

m2 = 1,

 

 

 

 

 

 

 

 

 

 

 

 

 

σ1

 

 

 

 

 

σ1

 

 

 

 

 

 

 

 

 

 

 

τ

γ

−t

γ

τ

γ

 

−t

γ

 

 

 

 

 

 

 

 

 

σ1

ε1

 

 

 

 

 

σ1

ε2

 

 

 

 

 

 

 

(106)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τσγ2

 

 

 

 

 

 

 

 

 

τσγ2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τσγ2−tεγ1

m1

+

τσγ2−tεγ2

m2 = 1.

 

 

 

In conclusion of this Subsection we will show how to define the operator proportional

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to the operator of cylindrical rigidity. With this purpose we will use the operators

 

 

 

1

=

 

2

 

 

3K + µ

,

 

 

 

 

 

1

 

 

=

 

2(3K + µ)

,

 

 

E =

9Kµ

.

 

(107)

 

 

1 + ν

9

 

 

 

 

 

 

1

 

 

ν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eK e

 

 

 

3Ke+

 

 

 

 

 

 

+ 4µ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

e

3K e e

 

 

Then considering (107) we have

 

 

e

 

 

 

e

 

 

 

e

 

e

 

e

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

=

 

 

 

 

E

+

 

 

 

E

 

 

= µ +

 

 

9Kµ

 

= µ + s−1.

 

(108)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

e

ν

2

2(1 + ν)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2(1 − ν)

 

 

3K + 4µ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

e

 

 

 

e

 

 

 

 

e

e

 

 

e

e

 

 

First we will calculate the operator

 

 

 

 

 

 

 

 

 

 

e

e

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

s =

3K + 4µ

=

 

1

 

1

 

 

 

 

4 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9Kµ

e

 

 

3

µ +

 

3 K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3K+ 4µ

 

 

 

 

 

 

 

 

3Kν

 

 

 

 

γ

 

 

 

 

 

 

ν

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

e

 

σ1

 

 

 

 

 

) +

 

 

 

 

σ2

 

 

γ

(109)

=

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ1

 

 

 

 

 

 

γ

 

 

 

 

 

 

 

 

 

 

 

 

 

1 e

 

 

 

 

 

 

 

 

 

 

 

 

γ

 

 

 

 

 

 

 

 

σ2) .

 

 

 

9Kµ

 

 

 

 

3K+ 4µ3

 

 

 

 

 

3K+ 4µ3

 

 

Complimentary Contributor Copy

 

 

 

Fractional Calculus in Mechanics of Solids

 

 

185

 

 

 

 

 

 

 

 

In order to find an operator reverse to operator (109), let us rewrite it in the form

 

where

 

 

s = s1 + n1 3γ σγ1) + n2 3γ σγ2) ,

 

 

(110)

 

 

 

 

+ 4µ

 

 

 

 

3Kνσ1

 

 

νσ2

 

 

s=

3Ke

 

,

n1 =

 

, n2 =

 

.

 

9Kµ

 

 

3K+ 4µ

 

 

 

 

 

 

 

 

 

 

 

3K+ 4µ

 

Then

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s−1 =

 

9Kµ

= s−1

1 − m1 3γ (tεγ1 ) − m2 3γ (tεγ2) ,

(111)

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where values t

γ

γ3K e e

 

 

 

 

 

1 and tε2

are determined from Eq. (105), and values m1 and m2 are defined

 

εe

 

 

e

 

e

 

 

 

 

 

 

 

 

from the set of Eqs. (106).

 

 

 

 

 

 

 

 

 

Finally, to calculate operator (108), it is necessary to take formulas (83) and (111) into

account. As a result we obtain

s

 

 

1 − µs+ 1 3γ ε1)

 

 

 

 

 

 

 

 

 

 

1

 

 

ν2

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

µs+ 1

 

 

 

µsνε1

 

 

γ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

µs

+ 1

 

3

 

ε1

µs

+ 1 3

ε2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m1

 

 

γ (tγ

)

 

 

 

 

 

m2

 

γ (tγ ) .

 

(112)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reverse operator has the form

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − ν2

 

=

 

 

 

 

s

 

 

 

 

 

1 + s1

 

(T γ ) + s2

 

 

(T γ ) + s3

(T γ ) .

(113)

 

 

 

 

 

γs+

 

 

 

 

 

 

3

 

 

 

Ee

γ

 

 

 

 

 

 

γ

 

 

 

 

3

 

σ1

 

 

 

 

 

 

 

 

σ2

 

3

σ3

 

 

 

 

 

e Tσ1

 

µ

 

 

 

 

 

1

 

 

 

 

 

 

 

 

γ

 

 

 

 

 

 

γ

 

 

 

 

γ

 

 

 

 

 

,

Tσ2

, and

Tσ3

could be found from the following equation:

 

 

Values

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

η1x

 

 

+

 

η2x

+

 

η3x

 

= −1,

 

 

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τεγ1 − x

 

τεγ2 − x

 

τεγ3 − x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − η1 − η2 − η3

 

x3 + (τεγ2 + τεγ3) η1 + (τεγ3 + τεγ1) η2 + (τεγ1 + τεγ2) η3

 

 

τ

γ

τ

γ

 

 

 

τ

 

γ

 

x + τ

γ

τ

γ

(1

 

 

η1) + τ

γ

τ

γ

 

(1

 

 

 

η2) + τ

γ

γ

 

 

 

ε1

 

 

 

 

ε3

 

 

 

 

 

 

 

 

τε2(1 η3) x

 

 

 

 

ε2

 

 

 

 

 

 

ε2

 

ε3

 

 

 

 

ε3

 

ε1

 

 

 

ε1 γ γ

γ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−τε1τε2

τε3

= 0,

(114)

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

η1 =

µsνε1

 

 

 

 

 

 

m1

 

 

 

 

 

 

 

 

 

 

 

 

m2

 

γ

γ

 

 

,

η2 =

 

 

 

 

 

 

,

 

 

η3 =

 

 

 

 

 

 

 

 

,

τε2

= tε1

,

µs+ 1

µs+

1

 

 

µs+ 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and values s1, s2, and s3 are determined from following set of equations

 

 

 

 

 

 

s1τ γ

 

+

 

s2τ

γ

 

 

+

 

s3τ

γ

 

= 1,

 

 

 

 

 

 

 

 

 

ε1

 

 

 

ε1

 

 

 

ε1

 

 

 

 

 

 

 

 

γ

γ

 

γ

 

γ

 

γ

 

γ

 

 

 

 

 

 

τ

 

 

−T

 

 

τ

 

−T

 

 

 

τ

 

 

−T

 

 

 

 

 

 

 

 

 

 

 

ε1

 

σ1

 

 

ε1

 

 

σ2

 

 

1

 

 

σ3

 

 

 

 

 

 

 

 

s1τεγ2

 

 

s2τεγ2

 

 

εs3τεγ2

 

 

 

 

 

 

 

 

τ γ

−T

γ

+

τ

γ −T

γ

+

τ γ −T

γ

 

= 1,

 

 

 

 

 

 

 

 

ε2

 

σ1

 

 

ε2

 

 

σ2

 

 

ε2

 

 

σ3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ

 

 

 

 

 

γ

 

 

 

 

 

 

 

γ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s1τε3

 

 

s2τε3

 

 

s3τε3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ

 

γ

 

 

γ

 

 

γ

+

 

γ

 

 

γ

 

= −1.

 

 

 

Applying the Vi´ete

τε3

−Tσ1

+ τε3−Tσ2

τε3−Tσ3

 

 

 

theorem to Eq.

(114), we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ γ γ

 

 

 

 

τεγ1τεγ2τεγ3

 

 

 

 

 

 

 

 

 

 

 

Tσ1Tσ2Tσ3

=

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − η1 − η2 − η3

 

 

 

 

what completely corresponds to relationship (50) at n = 3.

τεγ3 = tγε2 ,

(115)

Complimentary Contributor Copy

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]