Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ssylki.docx
Скачиваний:
59
Добавлен:
25.06.2022
Размер:
35.76 Mб
Скачать

1 Закон термодинамики:

Энергию невозможно ни создать, ни уничтожить, она лишь переходит из одной формы в другую.

Внутренняя энергия системы вместе с ее окружением остается постоянной.

Энтальпия (H)- это термодинамическое свойство вещества, которое указывает уровень энергии, сохраненной в его молекулярной структуре (мера упорядоченности системы, полная энергия )

Δ Н= Δ G – T ΔS

S-энтропия

G-свободная энергия Гиббса, величина, показывающая изменение энергии в ходе химической реакции.

Q= Δ Н+W

2 Закон термодинамики:

Каждая система стремится к росту энтропии.

Энтропия- мера неупорядоченности системы, обозначает меру необратимого рассеивания энергии или бесполезности энергии.

Свойства организма как открытой термодинамической системы:

Все клетки имеют одинаковую температуру-изотермичность и одинаковое давление -изобарность. Живая клетка изобарно-изотермическая система.

Живой организм не находится в равновесном состоянии с окружающей средой.

Система создает новые структуры и поддерживает ее за счет свободной энергии окружающей среды, это полезная форма энергии – свободная энергия Гиббса.

Эту энергию клетки возвращают обратно в окружающую среду в менее пригодной для использования форме -в виде энтропии.

Всю энергию, которую получают живые организмы, изначально они получают от энергии Солнца.

Живой организм непрерывно обменивается с окружающей средой и веществом, и энергией. Она находится в устойчивом, но не равновесном состоянии.

Устойчивость в данном случае означает стационарность.

Для поддержания стационарного состояния необходимо:

1)постоянство скорости притока и оттока питательных веществ и энергии

2)удаление конечных продуктов обмена из системы

3)постоянство физико-химических параметров: температура, давление, свободная энергия Гиббса, энтальпия.

4) концентрация субстрата должна обеспечивать насыщение ферментов, катализирующих данное превращение

5) реакции должны быть однонаправленны, создается поток в сторону деградации субстрата и такая реакция является лимитирующей, конечным звеном, кинетически необратимы

  1. Понятие о процессах катаболизма и анаболизма. Функции клеточного метаболизма. Основные принципы организации метаболизма: этапность, конвергенция, унификация. Стадии генерирования энергии по Кребсу.

Обмен веществ (метаболизм) – совокупность разнообразных биохимических процессов, в результате которых поступающие питательные вещества усваиваются, происходит освобождение энергии и синтез необходимых организму соединений. Метаболизм состоит из двух частей: анаболизма (синтеза сложных веществ из более простых с затратой энергии) и катаболизма (распада более сложных веществ до более простых с выделением энергии).

Межуточный обмен начинается с момента поступления питательных веществ в кровь и до момента выведения конечных продуктов обмена и обеспечивающих организм веществами и энергией, необходимыми для его жизнедеятельности.

Анаболизм – ферментативный синтез крупномолекулярных клеточных компонентов (белков, полисахаридов, нуклеиновых кислот, липидов), который происходит с затратой энергии (эндергонический процесс)

Важно! Анаболизм. Анаболизм проходит также три стадии. Исходные вещества – те, которые подвергаются превращениям на 3-ей стадии катаболизма. Таким образом, 3 стадия катаболизма – исходная стадия анаболизма. Реакции этой стадии имеют двойную функцию – амфиболическую. Например, синтез белка из аминокислот.

2 стадия – образование из кетокислот аминокислот в реакциях трансаминирования.

3 стадия – объединение аминокислот в полипептидные цепи.

Также, в результате последовательных реакций происходит синтез нуклеиновых кислот, липидов, полисахаридов.

Ряд реакций катаболизма практически необратимы. Их протеканию в обратном направлении препятствуют непреодолимые энергетические барьеры. В ходе эволюции были выработаны обходные реакции, сопряженные с затратой энергии макроэргических соединений. Катаболический и анаболический пути отличаются, как правило, локализацией в клетке – структурная регуляция.

Например: окисление жирных кислот осуществляется в митохондриях, тогда как синтез жирных кислот катализирует набор ферментов, локализованных в цитозоле.

Именно благодаря разной локализации катаболические и анаболические процессы в клетке могут протекать одновременно.

Катаболизм- ферментативное расщепление сравнительно крупных органических молекул окислительным путем, сопровождаемое высвобождением энергии и ее запасанием в виде молекул АТФ (экзергонический процесс)

Анаболизм и катаболизм неразрывно связаны между собой: анаболизм поставляет катаболизму вещество, катаболизм поставляет анаболизму энергию. Однако в условиях постоянной температуры передача энергии в виде тепла от одного химического процесса другому невозможна. Поэтому в живых системах имеет место передача энергии посредством особых макроэргических соединений, обладающих значительным запасом энергии. Универсальным макроэргическим соединением во всех клетках служит аденозинтрифосфорная кислота (аденозинтрифосфат, АТФ).

Аналогия между горением и катаболизмом весьма условна. В обоих случаях мы имеем химическое превращение (окисление) органических веществ в СО2 и Н2О в присутствии кислорода. Однако горение – процесс молниеносный, нерегулируемый и неэффективный (вся энергия рассеивается в виде тепла). Напротив, при катаболизме энергия органических веществ выделяется порциями на различных его этапах, достаточно эффективно запасается при синтезе АТФ, а процесс регулируется потребностью клетки в энергии.

Известно два способа синтеза АТФ: аэробный (окислительное фосфорилирование) и анаэробный (субстратное фофорилирование). Анаэробный катаболизм представляет собой неполное окисление органических веществ, характерен только для углеводов (гликолиз), сопровождается образованием молочной кислоты и малым энергетическим выходом – 2 молекулы АТФ на 1 молекулу глюкозы. В физиологических условиях анаэробный катаболизм дает не более 10 % всей АТФ в клетке. Исключением 31 из этого общего правила являются скелетные мышцы: в белых мышечных волокнах основное количество АТФ синтезируется анаэробным путем. Кроме того, гликолиз становится единственно возможным путем продукции АТФ в любой клетке при дефиците кислорода – гипоксии. Однако анаэробный катаболизм в большинстве случаев не способен длительно поддерживать жизнедеятельность клеток. Так, хорошо известно, что самые чувствительные к гипоксии клетки – нейроны коры больших полушарий головного мозга – могут прожить без кислорода не более 5 мин. Большинство клеток получают свыше 90 % необходимой АТФ за счет аэробного катаболизма. Это высокоэффективный биохимический процесс полного окисления органических веществ (углеводов, липидов и белков) до неорганических соединений СО2 и Н2О в присутствии кислорода. Аэробное окисление 1 молекулы глюкозы дает возможность синтезировать 38 молекул АТФ, похожие значения дает окисление аминокислот, а полное окисление липидов поставляет клетке сотни молекул АТФ на 1 молекулу вещества. Большинство клеток могут использовать все три класса питательных веществ как источник энергии. Тем не менее, в их использовании наблюдается очередность: углеводы служат первым энергетическим «топливом», при исчерпании запасов которых клетки переходят на катаболизм липидов. Белки подвергаются катаболизму в последнюю очередь, в экстремальных ситуациях, например, при длительном голодании. Весь синтезируемый фонд АТФ клетки расходуют на совершение различных видов полезной работы. Во-первых, это химическая работа – реакции анаболизма, по определению требующие затраты АТФ. Сюда относятся все биосинтезы в клетках, в особенности самые «дорогостоящие» – синтезы биополимеров (белков, ДНК и РНК, полисахаридов) и липидов. Во-вторых, это механическая работа – процессы перемещения клеток и их органелл в пространстве, в том числе и мышечное сокращение. Наконец, это осмотическая работа – процессы активного транспорта веществ через биологические мембраны, направленные на создание разности концентраций этих веществ внутри клетки и во внеклеточной жидкости. Если в роли таких веществ выступают зараженные частицы – ионы К+ , Na+ , Ca2+, Cl– , то формируется не только разность концентраций, но и разность потенциалов. В этом случае говорят о совершении электрической работы. Однако следует помнить, что КПД всех этих видов работы существенно ниже 100 %. Оставшаяся доля энергии АТФ переходит в тепло. В этом заключается еще одна важная функция всех процессов распада АТФ – функция теплопродукции.

Важно! Катаболизм. Расщепление основных пищевых веществ в клетке представляет собой ряд последовательных ферментативных реакций, составляющих 3 основные стадиикатаболизма (Ганс Кребс) – диссимиляция.

1 стадия – крупные органические молекулы распадаются на составляющие их специфические структурные блоки. Так, полисахариды расщепляются до гексоз или пентоз, белки – до аминокислот, нуклеиновые кислоты – до нуклеотидов и нуклеозидов, липиды – до жирных кислот, глицеридов и др. веществ.

Количество энергии, освобождающееся на этом этапе, невелико – менее 1%.

2 стадия – формируются ещё более простые молекулы, причём число их типов существенно уменьшается. Важно подчеркнуть, что здесь образуются продукты, которые являются общими для обмена разных веществ – это, как бы узлы, соединяющие разные пути метаболизма. К ним относятся: пируват – образуется при распаде углеводов, липидов, аминокислот; ацетил-КоА – объединяет катаболизм жирных кислот, углеводов, аминокислот.

Продукты, полученные на 2-й стадии катаболизма, вступают в 3-ю стадию, которая известна как цикл Кребса – цикл трикарбоновых кислот (ЦТК), в котором идут процессы терминального окисления. В ходе этой стадии все продукты окисляются до СО2 и Н2О. Практически вся энергия освобождается во 2-й и 3-ей стадиях катаболизма.

Все перечисленные выше стадии катаболизма или диссимиляции, которые известны как «схема Кребса» как нельзя более точно отражает важнейшие принципы метаболизма: конвергенцию и унификацию.Конвергенция – объединение различных метаболических процессов, характерных для отдельных видов веществ в единые, общие для всех видов. Следующий этап – унификация – постепенное уменьшение числа участников обменных процессов и использование в метаболических реакциях универсальных продуктов обмена.

На первом этапе четко прослеживается принцип унификации: вместо множества сложных молекул самого различного происхождения образуются достаточно простые соединения в количестве 2-3 десятков. Эти реакции происходят в желудочно-кишечном тракте и не сопровождаются выделением большого количества энергии. Она обычно рассеивается в виде тепла и не используется для других целей. Значение химических реакций первого этапа состоит в подготовке питательных веществ к действительному освобождению энергии.

На втором этапе четко прослеживается принцип конвергенции: слияние различных метаболических путей в единое русло – то есть в 3-й этап.

На 2-ом этапе освобождается около 30% энергии, содержащейся в питательных веществах. Остальные 60-70% энергии освобождается в цикле трикарбоновых кислот и связанного с ним процесса терминального окисления. В системе терминального окисления или дыхательной цепи, основу которого составляет окислительное фосфорилирование, унификация достигает своей вершины. Дегидрогеназы, катализирующие окисление органических веществ в ЦТК, передают на дыхательную цепь только водород, который в процессе окислительного фосфорилирования претерпевает одинаковые превращения.

В энергетическом обмене принято различать следующие основные этапы:

1.Подготовительный этап. Включает в себя реакции гидролиза в желудочнокишечном тракте питательных веществ до их мономеров: белков – до аминокислот, полисахаридов – до моносахаридов (в основном глюкозы), липидов – до жирных кислот и глицерина. Данный этап необходим, чтобы сделать питательные вещества доступными для каждой клетки, поскольку крупные молекулы не подвергаются всасыванию в кровь.

Виды пищеварения в желудочно-кишечном тракте:

а) дистантное переваривание – например, расщепление белков под действием пепсина в полости желудка или трипсина в просвете кишечника.

б) пристеночное или мембранное – например, действие пептидаз, фиксированных на поверхности клеток слизистой кишечника;

в) внутриклеточное – например, в лизосомах переваривание под действием протеолитических ферментов.

Кроме ферментов макроорганизма в пищеварении участвуют и ферменты кишечной микрофлоры.

2.Резорбция. Процесс всасывания питательных веществ через слизистую оболочку кишечника.

3.Промежуточный обмен. Включает многочисленные биохимические реакции аминокислот, глюкозы, жирных кислот и глицерина, направленные на их превращение в ограниченный круг «малых» молекул – пировиноградной кислоты, ацетилкоэнзима А и ряда других. Промежуточный обмен не требует затраты кислорода и протекает с синтезом небольшого количества АТФ в реакциях субстратного фосфорилирования.

4.Терминальный (заключительный) этап. Происходит полное окисление продуктов промежуточного обмена до неорганических веществ. Этот этап протекает в митохондриях клеток, где происходит потребление кислорода и образование СО2 и Н2О, и в ходе окислительного фосфорилирования синтезируется основное количество АТФ. Выделение, экскреция.

  1. Схема катаболизма основных питательных веществ (см выше в вопросе 2). Понятие о специфических и общем путях катаболизма.

Общий и специфический путь катаболизма:

В процессе катаболизма можно выделить три основные его части (рис. 7.1):

1. Расщепление в пищеварительном тракте. Это гидролитические реакции, превращаю щие сложные пищевые вещества в относительно небольшое число простых метаболитов: глюкозу, аминокислоты, глицерол, жирные кислоты.

2. Специфические пути катаболизма. На этом этапе простые метаболиты подвергаются специфическим реакциям расщепления, в результате которых образуется либо пировиноградная кислота, либо ацетил-КоА. Ацетил-КоА может образоваться из пирувата, а также из жирных кислот и аминокислот. В специфических путях катаболизма могут образоваться со единения, которые непосредственно включаются в цитратный цикл.

Катаболизм основных пищевых веществ: I — расщепление в пищеварительном тракте; II — специфичные пути катаболизма (1–5); III — общий путь катаболизма: 6 — окислительное декарбоксилирование пирувата; 7 — цитратный цикл; 8 — дыхательная цепь

3.Окислительное декарбоксилирование пирувата, цитратный цикл и дыхательная цепь завершают расщепление пищевых веществ до конечных продуктов — СО и Н2О. Следовательно, начиная со стадии образования пирувата, происходит унификация путей катаболизма. Из большого числа исходных соединений образуется всего два — пируват и аце тил-КоА. Процесс, начинающийся с окисления пирувата, называется общим путем ка таболизма. Именно в общем пути катаболизма образуется основное количество субстратов для реакций дегидрирования. Совместно с дыхательной цепью и окислительным фосфорилированием общий путь катаболизма является основным источником энергии в форме АТФ.

Стадии образования энергии по Кребсу:

В 4 окислительно-восстановительных реакциях ЦТК образуются 3 НАДН2 и 1 ФАДН2 , которые направляются далее в дыхательную цепь окислительного фосфорилирования. В процессе окислительного фосфорилирования в дыхательной цепи из 1 НАДН2 образуется 3 АТФ, из 1 ФАДН2 – 2 АТФ. Из 1 ГТФ, образующегося в ЦТК за счет субстратного фосфорилирования, синтезируется 1 АТФ. Таким образом, за 1 оборот ЦТК синтезируется 12 АТФ.