Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебники 60258.doc
Скачиваний:
6
Добавлен:
01.05.2022
Размер:
5.32 Mб
Скачать

3.6.4. Принцип возможных перемещений

Принцип возможных перемещений, или принцип Лагранжа, содержит необходимые и достаточные условия равновесия некоторых механических систем. Он формулируется следующим образом: для равновесия механической системы, подчиненной идеальным, стационарным и неосвобождающим связям, необходимо и достаточно, чтобы сумма элементарных работ всех активных сил, приложенных к точкам системы, была равна нулю на любом возможном перемещении системы, если скорости точек системы в рассматриваемый момент времени равны нулю, т.е.

. (221)

где – активная сила, приложенная к -й точке системы; – радиус-вектор этой точки.

В принцип возможных перемещений не входят силы реакций связей. Но его можно применять также и для определения неизвестных сил реакций связей. Для этого связь, силы реакции которой необходимо определить, отбрасывают (освобождают систему от этой связи), заменяя ее силами реакции. Эти силы добавляют к активным силам. Оставшиеся связи системы должны быть идеальными. Иногда неидеальную связь заменяют идеальной, компенсируя неидеальность соответствующими силами. Так, если связью для тела является шероховатая поверхность, то ее можно заменить гладкой поверхностью, добавляя к активным силам силу трения скольжения и в более общем случае – еще и пару сил, препятствующую качению. Связь в виде заделки для твердого тела можно заменить неподвижным шарниром, плоским или шаровым соответственно, добавляя момент заделки, векторный или алгебраический. Таким образом, в принцип возможных перемещений входят в действительности не активные силы, а все приложенные к точкам системы силы, кроме сил реакций идеальных связей, которые по условиям задач не требуется определять.

3.6.5. Обобщенные координаты системы

Пусть система состоит из точек и, следовательно, ее положение в пространстве в каждый момент времени определяется координатами точек системы, например декартовыми .

Предположим, что на систему наложены голономные связи, уравнения которых в общем случае могут содержать и производные от координат точек, но после их интегрирования они свелись к геометрическим и имеют форму

, . (222)

Освобождающие связи, выражающиеся неравенствами, не рассматриваются. Таким образом, координат связаны уравнениями и независимых координат будет .

Любые декартовых координат можно задать независимо друг от друга. Остальные координаты определятся из уравнений связей. Вместо независимых декартовых координат можно выбрать любые другие независимые параметры , зависящие от всех или части декартовых координат точек системы. Эти независимые параметры, определяющие положение системы в пространстве, называются обобщенными координатами системы. В общем случае они могут зависеть от всех декартовых координат точек системы, т. е.

, (223)

где изменяется от 1 до . Задание обобщенных координат полностью определяет положение точек системы относительно выбранной системы отсчета, например декартовых осей координат.

У свободной точки три обобщенные координаты. Если точка должна двигаться по заданной поверхности, то обобщенных координат только две и т.д. Используя уравнения связей (222) и выражения обобщенных координат через декартовы (223), можно выразить декартовы координаты через обобщенные, т.е. получить

,

,

.

Соответственно, для радиуса-вектора каждой точки системы , получим

. (224)

В случае стационарных связей время явно не входит в уравнения связей. Для голономных систем вектор возможного перемещения точки в соответствии с (224) можно выразить в форме

. (225)

Система, имеющая независимых обобщенных координат, характеризуется также независимыми возможными перемещениями или вариациями , если связи голономны. Для голономных систем число независимых возможных перемещений совпадает с числом независимых обобщенных координат. Следовательно, число степеней свободы голономной системы равно числу независимых обобщенных координат этой системы, т. е. . Для неголономных систем в уравнения связей могут входить производные от декартовых координат точек и даже могут быть такие уравнения связей, в которые входят только одни производные. Такие уравнения связей наложат ограничения на вариации , и, следовательно, уменьшат число независимых вариаций, не связывая функциональной зависимостью сами обобщенные координаты . Число степеней свободы неголономной системы, равное числу независимых возможных перемещений, меньше числа обобщенных координат системы. В дальнейшем рассматриваются только голономные системы, т. е. системы с голономными связями.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]