Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебники 60258.doc
Скачиваний:
6
Добавлен:
01.05.2022
Размер:
5.32 Mб
Скачать

2. Кинематика

2.1. Кинематика точки

В кинематике точки рассматриваются характеристики движения точки, такие, как скорость, ускорение, и методы их определения при различных способах задания движения. Важным в кинематике точки является понятие траектории. Траекторией точки называется геометрическое место ее последовательных положений в пространстве с течением времени относительно рассматриваемой системы отсчета. По виду траекторий движения точки делятся на прямолинейные и криволинейные.

Задать движение точки – значит задать правило, с помощью которого можно указать положение точки в любой момент времени. Существуют векторный, координатный и естественный способы задания движения точки.

2.1.1. Скорость и ускорение точки

О дной из основных характеристик движения точки является ее скорость относительно выбранной системы отсчета, которая изображена в виде декартовой прямоугольной системы координат (рис. 21).

П

Рис. 21

оложение движущейся точки относительно рассматриваемой системы отсчета определяется в момент времени радиусом-вектором , который соединяет неподвижную точку с этой точкой. В другой момент времени движущаяся точка займет положение и ее радиусом-вектором будет . За время радиус-вектор движущейся точки изменится на .

Средней скоростью точки за время называют отношение , т.е.:

.

Средняя скорость параллельна вектору . В общем случае она зависит от времени осреднения . У нее нет конкретной точки приложения на траектории.

Введем скорость точки в момент , которая определяется как предел средней скорости, если промежуток времени, за который определяется средняя скорость, стремится к нулю, т. е.

.

Скорость точки направлена в сторону ее движения по предельному направлению вектора при , стремящемся к нулю, т.е. по предельному направлению секущей , которая совпадает с касательной к траектории в точке . Таким образом, скорость точки равна первой производной по времени от ее радиуса-вектора. Она направлена по касательной к траектории в сторону движения точки.

Начало радиуса-вектора движущейся точки можно выбрать в любой неподвижной точке. На рис. 21 представлен случай, в котором радиусом-вектором является также с началом в точке . Радиусы-векторы имеют одинаковые изменения и за время и поэтому

. (44)

Пусть движущаяся точка в момент времени имеет скорость . В момент времени эта точка занимает положение , имея скорость (рис. 22). Чтобы изобразить приращение скорости за время , перенесем вектор скорости параллельно самому себе в точку .

Средним ускорением точки за время называют отношение , т.е. . Среднее ускорение точки параллельно приращению скорости . Как и средняя скорость, среднее ускорение не имеет на траектории конкретной течки приложения и и

Рис. 22

зображено в точке условно. В общем случае среднее ускорение зависит от времени .

У скорением точки в момент времени называют предел, к которому стремится среднее ускорение при , стремящемся к нулю, т. е.

. (45)

Таким образом, ускорение точки равно первой производной по времени от скорости точки.

Приращение скорости и, следовательно, среднее ускорение направлены внутрь вогнутости траектории. Так же направлены и их предельные значения при , стремящемся к нулю. Поэтому ускорение точки направлено тоже внутрь вогнутости траектории.

У скорение точки можно представить в виде (рис. 23):

. (46)

Часть ускорения, равная

,

н

Рис. 23

азывается касательной составляющей ускорения. Она направлена по касательной к траектории. Другая часть ускорения

называется нормальной составляющей ускорения ( – радиус кривизны траектории). Она направлена внутрь вогнутости траектории, перпендикулярно .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]