
- •Вопросы госэкзамена по направлению
- •09.03.03 «Прикладная информатика», 2020-2021 уч.Год Дисциплина «Вычислительные системы, сети и телекоммуникации»
- •Понятие вычислительной системы; архитектура и организация; этапы развития
- •Краткая характеристика первого и второго поколений вычислительных систем
- •Технические новации вычислительных систем третьего поколения
- •Специфика вычислительных систем четвертого и пятого поколений
- •Концепция вычислительной машины с хранимой в памяти программой
- •Классификация вычислительных систем, таксономия Флинна
- •Основная память вычислительной машины; временные характеристики
- •Структура вычислительной машины фон Неймана
- •Устройство управления вычислительной машины фон Неймана
- •Арифметико-логическое устройство, укрупненное представление тракта данных
- •Управление трактом данных, стек, машинный цикл с прерыванием
- •Шестиуровневая модель современной вычислительной системы
- •Параллельные вычислительные системы, закон Амдала
- •Параллелизм
- •Параллелизм на уровне инструкций
- •Параллелизм данных
- •Параллелизм задач
- •Распределённые операционные системы
- •Закон Амдала
- •Эталонная модель взаимодействия открытых систем
- •Физический уровень модели osi/rm
- •Потенциальная скорость передачи данных; формулы Шеннона и Найквиста
- •Канальный уровень модели osi/rm; система стандартов ieee 802
- •Межсетевой уровень модели osi/rm
- •Транспортный уровень модели osi/rm
- •Назначение и примеры реализации уровней 5, 6, 7 модели osi/rm
- •Дисциплина «Сетевое управление и протоколы»
- •Стеки коммуникационных протоколов
- •Способы и протоколы маршрутизации в ip-сетях
- •Адресация в сетях ip, классы сетей
- •Структурирование ip-сетей с помощью подсетей; маски подсетей
- •Протокол iPv6
- •Дисциплина «Мультимедиа технологии»
- •Психофизиологический закон Вебера-Фехнера
- •Кривые равной громкости; динамический диапазон
- •Восприятие сложных звуков, критические полосы
- •Градиент передачи яркости, гамма-коррекция
- •Цветовые модели
- •Цветовые стандарты
- •Цветовое пространство yCbCr
- •Цветовая субдискретизация
- •Дисциплина «Методы обработки аудио и видео данных»
- •Дискретизация, теорема Котельникова
- •Квантование; шум квантования
- •Основы устранения избыточности и сжатия аудиоданных с потерями
- •Характеристики электронных изображений
- •Растрово-пиксельный принцип электронного изображения
- •Дисциплина «Статистическая обработка информации»
- •Разделы статистической обработки информации: теория оценок, теория проверки статистических гипотез
- •Смещенность оценки; примеры смещенных и несмещенных оценок
- •Состоятельность оценки; примеры состоятельных и несостоятельных оценок
- •Эффективность оценки; функции штрафа и риска
- •Смещенность симметричного распределения: выборочное среднее, выборочная медиана, усеченное среднее
- •Метод моментов: пример нахождения параметров равномерного распределения
- •Оценка закона распределения случайной величины: эмпирическая интегральная функция распределения
- •Оценка закона распределения случайной величины: метод гистограмм
- •Коэффициенты асимметрии и эксцесса; диаграммы Каллена-Фрея
- •Дисциплина «Построение и анализ графовых моделей»
- •Графы: определения, соотношение числа ребер и вершин
- •Изоморфизм графов, примеры
- •Пути, цепи, циклы; связность графов; алгоритм нахождения компонент связности
- •Эйлеров цикл: определение, условие существования, алгоритм нахождения
- •Гамильтонов цикл: определение, алгоритм нахождения на основе динамического программирования
- •Деревья: остовное дерево, алгоритм Крускала
- •Способы хранения структуры графа в эвм
- •Алгоритм поиска кратчайшего пути в графе
- •Задача о коммивояжере: оптимальный и эвристический алгоритмы решения
- •Раскраска графов, эвристический алгоритм раскраски
- •Дисциплина «Имитационное моделирование»
- •Входные потоки заявок смо: классификация и основные характеристики
- •Модель сервера смо
- •Модель буфера смо; дисциплины обслуживания
- •Классификация Кендалла
- •Теорема Литтла
- •Время пребывания заявки в системе типа m/m/1; среднее количество заявок в системе
- •Три леммы о пуассоновском потоке (слияние, расщепление, выход m/m/1)
- •Расчет однонаправленных сетей массового обслуживания (сети Джексона)
Способы хранения структуры графа в эвм
Алгоритм поиска кратчайшего пути в графе
Кратчайший путь рассматривается при помощи некоторого математического объекта, называемого графом. Поиск кратчайшего пути ведется между двумя заданными вершинами в графе. Результатом является путь, то есть последовательность вершин и ребер, инцидентных двум соседним вершинам, и его длина.
Рассмотрим три наиболее эффективных алгоритма нахождения кратчайшего пути:
алгоритм Дейкстры;
алгоритм Флойда;
перебор с возвратом.
Указанные алгоритмы легко выполняются при малом количестве вершин в графе. При увеличении их количества задача поиска кратчайшего пути усложняется.
Алгоритм Дейкстры
Данный алгоритм является алгоритмом на графах, который изобретен нидерландским ученым Э. Дейкстрой в 1959 году. Алгоритм находит кратчайшее расстояние от одной из вершин графа до всех остальных и работает только для графов без ребер отрицательного веса.
Каждой вершине приписывается вес – это вес пути от начальной вершины до данной. Также каждая вершина может быть выделена. Если вершина выделена, то путь от нее до начальной вершины кратчайший, если нет – то временный. Обходя граф, алгоритм считает для каждой вершины маршрут, и, если он оказывается кратчайшим, выделяет вершину. Весом данной вершины становится вес пути. Для всех соседей данной вершины алгоритм также рассчитывает вес, при этом ни при каких условиях не выделяя их. Алгоритм заканчивает свою работу, дойдя до конечной вершины, и весом кратчайшего пути становится вес конечной вершины.
Шаг 1. Всем вершинам, за исключением первой, присваивается вес равный бесконечности, а первой вершине – 0.
Шаг 2. Все вершины не выделены.
Шаг 3. Первая вершина объявляется текущей.
Шаг 4. Вес всех невыделенных вершин пересчитывается по формуле: вес невыделенной вершины есть минимальное число из старого веса данной вершины, суммы веса текущей вершины и веса ребра, соединяющего текущую вершину с невыделенной.
Шаг 5. Среди невыделенных вершин ищется вершина с минимальным весом. Если таковая не найдена, то есть вес всех вершин равен бесконечности, то маршрут не существует. Следовательно, выход. Иначе, текущей становится найденная вершина. Она же выделяется.
Шаг 6. Если текущей вершиной оказывается конечная, то путь найден, и его вес есть вес конечной вершины.
Шаг 7. Переход на шаг 4.
Алгоритм Флойда
Основная идея алгоритма. Пусть есть три вершины i, j, k и заданы расстояния между ними. Если выполняется неравенство A[i,k]+A[k,j]<A[i,j], то целесообразно заменить путь i->j путем i->k->j. Такая замена выполняется систематически в процессе выполнения данного алгоритма.
Шаг 0. Определяем начальную матрицу расстояния A0 и матрицу последовательности вершин S0. Каждый диагональный элемент обеих матриц равен 0, таким образом, показывая, что эти элементы в вычислениях не участвуют. Полагаем k = 1.
Основной шаг k. Задаем строку k и столбец k как ведущую строку и ведущий столбец. Рассматриваем возможность применения замены описанной выше, ко всем элементам A[i,j] матрицы Ak-1. Если выполняется неравенство A[i,k]+A[k,j]<A[i,j], (i\ne k, j\ne k, i\ne j), тогда выполняем следующие действия:
создаем матрицу Ak путем замены в матрице Ak-1 элемента A[i,j] на сумму A[i,k]+A[k,j] ;
создаем матрицу Sk путем замены в матрице Sk-1 элемента S[i,j] на k. Полагаем k = k + 1 и повторяем шаг k.
Перебор с возвратом
Данный метод основан на методе поиска в глубину. Перебор с возвратом считают методом проб и ошибок ("попробуем сходить в эту сторону: не получится – вернемся и попробуем в другую"). Так как перебор вариантов осуществляется методом поиска в глубину, то целесообразно во время работы алгоритма хранить текущий путь в дереве. Этот путь представляет собой стек Way.
Также необходим массив Dist, размерность которого соответствует количеству вершин графа, хранящий для каждой вершины расстояние от нее до исходной вершины.
Пусть текущей является некоторая клетка (в начале работы алгоритма – клетка (1, 1) ). Если для текущей клетки есть клетка-сосед Neighbor, отсутствующая в Way, в которую на этом пути еще не ходили, то добавляем Neighbor в Way и текущей клетке присваиваем Neighbor, иначе извлечь из Way.
Приведенное выше описание дает четко понять, почему этот метод называется перебором с возвратом. Возврату здесь соответствует операция "извлечь из Way ", которая уменьшает длину Way на 1.
Перебор заканчивается, когда Way пуст и делается попытка возврата назад. В этой ситуации возвращаться уже некуда.