
- •Вопросы госэкзамена по направлению
- •09.03.03 «Прикладная информатика», 2020-2021 уч.Год Дисциплина «Вычислительные системы, сети и телекоммуникации»
- •Понятие вычислительной системы; архитектура и организация; этапы развития
- •Краткая характеристика первого и второго поколений вычислительных систем
- •Технические новации вычислительных систем третьего поколения
- •Специфика вычислительных систем четвертого и пятого поколений
- •Концепция вычислительной машины с хранимой в памяти программой
- •Классификация вычислительных систем, таксономия Флинна
- •Основная память вычислительной машины; временные характеристики
- •Структура вычислительной машины фон Неймана
- •Устройство управления вычислительной машины фон Неймана
- •Арифметико-логическое устройство, укрупненное представление тракта данных
- •Управление трактом данных, стек, машинный цикл с прерыванием
- •Шестиуровневая модель современной вычислительной системы
- •Параллельные вычислительные системы, закон Амдала
- •Параллелизм
- •Параллелизм на уровне инструкций
- •Параллелизм данных
- •Параллелизм задач
- •Распределённые операционные системы
- •Закон Амдала
- •Эталонная модель взаимодействия открытых систем
- •Физический уровень модели osi/rm
- •Потенциальная скорость передачи данных; формулы Шеннона и Найквиста
- •Канальный уровень модели osi/rm; система стандартов ieee 802
- •Межсетевой уровень модели osi/rm
- •Транспортный уровень модели osi/rm
- •Назначение и примеры реализации уровней 5, 6, 7 модели osi/rm
- •Дисциплина «Сетевое управление и протоколы»
- •Стеки коммуникационных протоколов
- •Способы и протоколы маршрутизации в ip-сетях
- •Адресация в сетях ip, классы сетей
- •Структурирование ip-сетей с помощью подсетей; маски подсетей
- •Протокол iPv6
- •Дисциплина «Мультимедиа технологии»
- •Психофизиологический закон Вебера-Фехнера
- •Кривые равной громкости; динамический диапазон
- •Восприятие сложных звуков, критические полосы
- •Градиент передачи яркости, гамма-коррекция
- •Цветовые модели
- •Цветовые стандарты
- •Цветовое пространство yCbCr
- •Цветовая субдискретизация
- •Дисциплина «Методы обработки аудио и видео данных»
- •Дискретизация, теорема Котельникова
- •Квантование; шум квантования
- •Основы устранения избыточности и сжатия аудиоданных с потерями
- •Характеристики электронных изображений
- •Растрово-пиксельный принцип электронного изображения
- •Дисциплина «Статистическая обработка информации»
- •Разделы статистической обработки информации: теория оценок, теория проверки статистических гипотез
- •Смещенность оценки; примеры смещенных и несмещенных оценок
- •Состоятельность оценки; примеры состоятельных и несостоятельных оценок
- •Эффективность оценки; функции штрафа и риска
- •Смещенность симметричного распределения: выборочное среднее, выборочная медиана, усеченное среднее
- •Метод моментов: пример нахождения параметров равномерного распределения
- •Оценка закона распределения случайной величины: эмпирическая интегральная функция распределения
- •Оценка закона распределения случайной величины: метод гистограмм
- •Коэффициенты асимметрии и эксцесса; диаграммы Каллена-Фрея
- •Дисциплина «Построение и анализ графовых моделей»
- •Графы: определения, соотношение числа ребер и вершин
- •Изоморфизм графов, примеры
- •Пути, цепи, циклы; связность графов; алгоритм нахождения компонент связности
- •Эйлеров цикл: определение, условие существования, алгоритм нахождения
- •Гамильтонов цикл: определение, алгоритм нахождения на основе динамического программирования
- •Деревья: остовное дерево, алгоритм Крускала
- •Способы хранения структуры графа в эвм
- •Алгоритм поиска кратчайшего пути в графе
- •Задача о коммивояжере: оптимальный и эвристический алгоритмы решения
- •Раскраска графов, эвристический алгоритм раскраски
- •Дисциплина «Имитационное моделирование»
- •Входные потоки заявок смо: классификация и основные характеристики
- •Модель сервера смо
- •Модель буфера смо; дисциплины обслуживания
- •Классификация Кендалла
- •Теорема Литтла
- •Время пребывания заявки в системе типа m/m/1; среднее количество заявок в системе
- •Три леммы о пуассоновском потоке (слияние, расщепление, выход m/m/1)
- •Расчет однонаправленных сетей массового обслуживания (сети Джексона)
Цветовая субдискретизация
Цветовая субдискретизация — технология кодирования изображений со снижением цветового разрешения, при которой частота выборки цветоразностных сигналов может быть меньше частоты выборки яркостного сигнала. Основана на особенности человеческого зрения, выраженной большей чувствительностью к перепадам яркости, чем цвета. Цветовая субдискретизация является важным способом снижения размера цифрового потока видеоданных (цифровое сжатие видеоинформации). Используется в системах аналогового и цифрового телевидения, цифровой видеозаписи и алгоритмах сжатия изображений, таких как JPEG.
На практике кодирование изображений осуществляется уменьшением разрешения в цветоразностных каналах при сохранении разрешения в канале яркости.
Форматы субдискретизации
Структура дискретизации сигнала обозначается как соотношение между тремя частями X:a:b (например, 4:2:2), описывающими число выборок яркостных и цветоразностных сигналов. Также иногда используется обозначение с четырьмя частями (4:2:2:4), где четвёртая цифра, если она включена, должна быть идентична первой цифре, указывающая на наличие сигнала четвертого канала, содержащего информацию прозрачности (альфа-канал). Этими частями являются:
X — частота дискретизации яркостного канала, выраженная коэффициентом базовой частоты (ширина макропикселя)
a — число выборок цветоразностных сигналов (Cr, Cb) в горизонтальном направлении в первой строке
b — число (дополнительных) выборок цветоразностных сигналов (Cr, Cb) во второй строке
Alpha — частота дискретизации альфа-канала (по отношению к первой цифре). Может быть опущен, если альфа-компонент отсутствует, и равна X при его наличии.
Рисунок 1 – Формат 4:1:1
Рисунок 2 – Формат 4:2:0
Рисунок 3 – Формат 4:2:2
Рисунок 4 – Формат 4:4:4
4:4:4
Каждая из трех компонент Y'CbCr имеет одинаковую частоту дискретизации. Эта схема иногда используется в дорогих сканерах и кинематографическом пост-продакшн производстве. Как правило, для предоставления такой пропускной способности используется двухканальный интерфейс HD-SDI стандарта SMPTE 372M. Первое подключение - для передачи сигнала 4:2:2, второе подключение — для сигнала 0:2:2, в сочетании будет передано 4:4:4.
Стоит отметить, что под "4:4:4" может пониматься цветовое пространство R'G'B', которое вовсе не имеет цветовой субдискретизации. Видеоформаты, такие как HDCAM SR, могут записывать цифровой видеосигнал с частотой выборки 4:4:4 R'G'B' посредством двухканального HD-SDI.
4:2:2
Используется в научных исследованиях, профессиональных системах и формате MPEG-2. Рекомендация 601 определяет стандарт полного цифрового видеосигнала с соотношением частот дискретизации яркостного и цветоразностных сигналов как 4:2:2. В каждой строке передается полный сигнал яркости, а для цветоразностных сигналов производится выборка каждого второго отсчета. Таким образом, цветовое горизонтальное разрешение снижается вдвое.
4:2:1
Этот режим также определен технически. Используется в ограниченном наборе аппаратных и программных кодеров.
4:1:1
В соотношении 4:1:1 горизонтальное разрешение цветоразностных сигналов снижается до четверти от полного разрешения сигнала яркости, также полоса пропускания сужается (пропускная способность увеличивается) в два раза по сравнению с режимом без субдискретизации. Первоначально 4:1:1 применялся в формате DV, который не считался вещательным и был единственным приемлемым форматом видеозаписи для низкобюджетных и потребительских приложений. В настоящее время DV-формат (с выборкой 4:1:1) используется профессионально для производства новостей и воспроизведения видео при помощи серверов.
В системе NTSC, если частота дискретизации яркости равна 13,5 МГц, то это означает, что каждый из сигналов Cr и Cb будет дискретизован с частотой 3,375 МГц, что соответствует максимальной пропускной способности частоты Найквиста 1,6875 МГц, в то время как традиционный "NTSC кодер высокого класса аналогового вещания" будет иметь частоту Найквиста 1,5 МГц и 0,5 МГц для I/Q каналов. Однако в большинстве единиц оборудования, особенно в дешевых телевизорах и VHS-/Betamax-видеомагнитофонах, каналы цветности имеют пропускную способность только 0,5 МГц для Cr и Cb (что эквивалентно для I/Q). Таким образом, система фактически обеспечивает увеличенную пропускную способность цвета по сравнению с лучшими композитными аналоговыми спецификациями для NTSC, несмотря на то, что используется только 1/4 от полной полосы частот цветовой составляющей "полного" цифрового сигнала. Форматы, которые используют 4:1:1, включают в себя:
DVCPRO (NTSC и PAL)
NTSC DV и DVCAM
D-7
4:2:0
Различные варианты 4:2:0 конфигураций можно найти в:
В стандартах кодирования видео ИСО/МЭК, MPEG, МККТТ и Группы экспертов кодирования видео "H.26x", включая реализации H.262/MPEG-2 Part 2, такие как DVD (хотя некоторые профили MPEG-4 Part 2 и H.264/MPEG-4 AVC позволяют кодировать со структурой выборки более высокого качества, например, такой как 4:4:4)
PAL DV и DVCAM
HDV
AVCHD и AVC-Intra 50
Apple Intermediate Codec
Наиболее распространенные реализации JPEG / JFIF и MJPEG
VC-1
Для цветоразностных компонентов Cb и Cr при дискретизации отбрасывается каждый второй отсчёт по горизонтали и по вертикали. Есть три варианта схем 4:2:0, имеющих различные горизонтальные и вертикальные размещения отсчётов:
Отсчеты цветоразностных компонентов в формате 4:2:0, принятом в системе компрессии MPEG-2, не совмещены с отсчётами яркостной составляющей.
В JPEG / JFIF, H.261 и MPEG-1, Cb и Cr совмещены и располагаются между альтернативными отсчетами яркости.
В 4:2:0 DV, отсчёты цветоразностных компонентов Cb и Cr совмещены с отсчётами яркостной составляющей изображения, может быть получен из прототипной структуры 4:2:2 путём поочередного исключения одного цветоразностного компонента в каждой второй строке каждого поля.
Этот вид обработки данных особенно хорошо подходит для цветных систем PAL и SECAM. Большинство цифровых видео форматов PAL используют соответственно 4:2:0, за исключением DVCPRO25, который использует 4:1:1. Оба варианта 4:1:1 и 4:2:0 вдвое сокращают требования к пропускной способности по сравнению с представлением без субдискретизации.
4:1:0
Поддерживается некоторыми кодеками, но используется не слишком широко. При этом соотношении коэффициентов используется половина вертикального и четверть горизонтального цветового разрешения, и лишь одна восьмая часть от полосы пропускания максимального цветового разрешения.
3:1:1
Используется в формате видеозаписи высокой чёткости Sony HDCAM (не HDCAM SR). В горизонтальном направлении производится выборка отсчетов сигнала яркости на три четверти от полной частоты дискретизации HD — 1440 выборок в строке против 1920 в HDCAM SR. В вертикальном направлении, как в канале яркости, так и в канале цветности, производится полная дискретизация HD (1080 отсчетов).