
- •Вопросы госэкзамена по направлению
- •09.03.03 «Прикладная информатика», 2020-2021 уч.Год Дисциплина «Вычислительные системы, сети и телекоммуникации»
- •Понятие вычислительной системы; архитектура и организация; этапы развития
- •Краткая характеристика первого и второго поколений вычислительных систем
- •Технические новации вычислительных систем третьего поколения
- •Специфика вычислительных систем четвертого и пятого поколений
- •Концепция вычислительной машины с хранимой в памяти программой
- •Классификация вычислительных систем, таксономия Флинна
- •Основная память вычислительной машины; временные характеристики
- •Структура вычислительной машины фон Неймана
- •Устройство управления вычислительной машины фон Неймана
- •Арифметико-логическое устройство, укрупненное представление тракта данных
- •Управление трактом данных, стек, машинный цикл с прерыванием
- •Шестиуровневая модель современной вычислительной системы
- •Параллельные вычислительные системы, закон Амдала
- •Параллелизм
- •Параллелизм на уровне инструкций
- •Параллелизм данных
- •Параллелизм задач
- •Распределённые операционные системы
- •Закон Амдала
- •Эталонная модель взаимодействия открытых систем
- •Физический уровень модели osi/rm
- •Потенциальная скорость передачи данных; формулы Шеннона и Найквиста
- •Канальный уровень модели osi/rm; система стандартов ieee 802
- •Межсетевой уровень модели osi/rm
- •Транспортный уровень модели osi/rm
- •Назначение и примеры реализации уровней 5, 6, 7 модели osi/rm
- •Дисциплина «Сетевое управление и протоколы»
- •Стеки коммуникационных протоколов
- •Способы и протоколы маршрутизации в ip-сетях
- •Адресация в сетях ip, классы сетей
- •Структурирование ip-сетей с помощью подсетей; маски подсетей
- •Протокол iPv6
- •Дисциплина «Мультимедиа технологии»
- •Психофизиологический закон Вебера-Фехнера
- •Кривые равной громкости; динамический диапазон
- •Восприятие сложных звуков, критические полосы
- •Градиент передачи яркости, гамма-коррекция
- •Цветовые модели
- •Цветовые стандарты
- •Цветовое пространство yCbCr
- •Цветовая субдискретизация
- •Дисциплина «Методы обработки аудио и видео данных»
- •Дискретизация, теорема Котельникова
- •Квантование; шум квантования
- •Основы устранения избыточности и сжатия аудиоданных с потерями
- •Характеристики электронных изображений
- •Растрово-пиксельный принцип электронного изображения
- •Дисциплина «Статистическая обработка информации»
- •Разделы статистической обработки информации: теория оценок, теория проверки статистических гипотез
- •Смещенность оценки; примеры смещенных и несмещенных оценок
- •Состоятельность оценки; примеры состоятельных и несостоятельных оценок
- •Эффективность оценки; функции штрафа и риска
- •Смещенность симметричного распределения: выборочное среднее, выборочная медиана, усеченное среднее
- •Метод моментов: пример нахождения параметров равномерного распределения
- •Оценка закона распределения случайной величины: эмпирическая интегральная функция распределения
- •Оценка закона распределения случайной величины: метод гистограмм
- •Коэффициенты асимметрии и эксцесса; диаграммы Каллена-Фрея
- •Дисциплина «Построение и анализ графовых моделей»
- •Графы: определения, соотношение числа ребер и вершин
- •Изоморфизм графов, примеры
- •Пути, цепи, циклы; связность графов; алгоритм нахождения компонент связности
- •Эйлеров цикл: определение, условие существования, алгоритм нахождения
- •Гамильтонов цикл: определение, алгоритм нахождения на основе динамического программирования
- •Деревья: остовное дерево, алгоритм Крускала
- •Способы хранения структуры графа в эвм
- •Алгоритм поиска кратчайшего пути в графе
- •Задача о коммивояжере: оптимальный и эвристический алгоритмы решения
- •Раскраска графов, эвристический алгоритм раскраски
- •Дисциплина «Имитационное моделирование»
- •Входные потоки заявок смо: классификация и основные характеристики
- •Модель сервера смо
- •Модель буфера смо; дисциплины обслуживания
- •Классификация Кендалла
- •Теорема Литтла
- •Время пребывания заявки в системе типа m/m/1; среднее количество заявок в системе
- •Три леммы о пуассоновском потоке (слияние, расщепление, выход m/m/1)
- •Расчет однонаправленных сетей массового обслуживания (сети Джексона)
Кривые равной громкости; динамический диапазон
Кривые равной громкости – это графическое отображение нелинейности восприятия звука человеком.
Кривые равной громкости или кривые Флетчера-Мэнсона показывают, какое звуковое давление необходимо создать, чтобы различные частоты воспринимались как одинаково громкие.
Давайте посмотрим на рисунок.
По вертикали – уровень звукового давления в дБ.
По горизонтали – частота в Гц.
Глядя на кривые можно сделать вывод, что звук с частотой 1 кГц и уровнем 20 дБ будет казаться таким же громким (субъективно) как и звук с частотой 90 Гц и уровнем 55 дБ. Звук с частотой 2 кГц и уровнем 40 дБ, будет казаться таким же громким, как и звук с частотой 7 кГц и уровнем 50 дБ.
Таким образом, можно сделать вывод, что человек воспринимает низкие и высокие частоты значительно хуже, чем средние. Это связано в первую очередь с тем, что именно в диапазоне средних частот лежит человеческая речь. Кроме того, стоит обратить внимание, что лучше всего воспринимаются частоты в диапазоне от 1 до 5 кГц. Именно эта область отвечает за разборчивость.
Так как же использовать кривые равной громкости при создании музыки?
Эти кривые позволяют понять, какое соотношение низких, средних и высоких частот является оптимальным. В процессе работы над треком необходимо равняться на АЧХ приближённую к кривым равной громкости.
Динамический диапазон звуковой системы это разница в уровне между высшим пиком сигнала, который может быть воспроизведен системой (или устройством в системе) и амплитудой высшей спектральной составляющей шума.
Каждый электронный прибор имеет свой динамический диапазон, который определяется, прежде всего, ограничениями электропитания и уровнем остаточного шума прибора. Сильная узкополосная компонента порога шума устройства ограничивает динамический диапазон системы.
Соотношение сигнал/шум это разница между средним уровнем сигнала и средним уровнем шума. Устройство, которое работает на некоем среднем выходном уровне программного материала, должно иметь пики, которые превышают этот уровень на 10-20 дБ.
Именно поэтому мы держим средний уровень около «0» на RMS-индикации на мастере, а весь остальной размах напряжения резервируется для пиков в программном материале. Средний уровень (average level) имеет важное значение — это то, по чему мы, как слушатели, судим о программной громкости.
Если использовать вольтметр для измерения RMS-значений остаточного шума устройства, отношение сигнал/шум будет равно разнице в уровне между этим значением (обычно выраженным в dBV или dBu) и номинальным «нулевым» выходным уровнем (также выраженным в dBV или dBu). При этом предпочтительно, чтобы устройство работало на уровне «около ноля», подобно тому, как большинство микшерных консолей для оптимизации их структуры усиления.
Динамический диапазон системы (или компонента системы) не зависит от присутствия сигнала. Это просто разница между максимально возможным неискаженным выходным уровнем и самым высоким уровнем собственного шума (обычно А-взвешенного) какого-либо компонента в системе. Соотношение «сигнал/шум» требует наличия сигнала, поэтому оно должно измеряться при фактическом использовании системы или компонента системы.
Система
с широким динамическим диапазоном может
иметь плохое соотношение «сигнал/шум»
из-за неудачного способа её эксплуатации.
«Динамический диапазон» можно использовать
для описания производительности, которой
можно добиться от системы или устройства,
в то время как «сигнал/шум» может
использоваться для описания того, что
фактически достигнуто на практике.
На практике
Для измерения уровня звукового давления (SPL) при живом выступлении SPL-метр должен использовать А-взвешивание, а измерительный микрофон должен находиться в типичной позиции слушателя, на высоте около метра.
А-взвешивание обычно используют, поскольку эта шкала, как и люди, наиболее чувствительна к части спектра от 1 кГц до 4 кГц. Поскольку большинство измерителей звукового давления имеют возможность усреднения измерений, то это дает средний уровень звукового давления при исполнении.
На графике справа — кривые А-, В-, и С-взвешиваний.
Конечно, пики в программном материале повышают это среднее значение, хотя измеритель не может реагировать достаточно быстро, чтобы прочитать их. Этот «лаг измерения» составляет обычно порядка 10 дБ, но может быть выше (или ниже) в зависимости от программного материала.
Теперь, если все источники звука на сцене замолчат (но микрофоны останутся открытыми), то можно будет измерить уровень собственных шумов системы, тем же SPL-метром, и тем же способом. В правильно спроектированной звуковой системе этот шум будет создаваться окружающей средой из открытых микрофонов (но не остаточными шумами электронных компонентов).
В аудитории с собственным уровнем шума 40 дБА, отношение сигнал/шум с типичным «лекторским» микрофоном будет только порядка 37 дБ со «средним» спикером (77 dBA), стоящим на расстоянии 1 фут от микрофона. Десять открытых микрофонов могут повысить минимальный уровень шума еще на 10 дБ, если их чувствительность и настройки такие же, как у первого микрофона, исходя их 10 log (количество открытых микрофонов) = 10 дБ.
К сожалению, для повышения отношение сигнал/шум системы в данном случае нет никакого выбора, увеличение уровня полезного сигнала также приведет к увеличению шума. Это очевидное последствие применения дальних микрофонов и невозможности отключения ненужных микрофонов.
Теперь, если сильный вокалист способен произвести 120 dBA в ручной микрофон в этой же системе (что не редкость для вокалистов, поющих в ручные, ближние микрофоны), то сигнал/шум будет порядка 80 dB (120 dB — 40 dB = 80 dB). Вот почему мы настаиваем, что правильная микрофонная техника имеет важное значение для хорошей производительности, поскольку, в конечном счете, влияет на соотношение сигнал/шум системы.
Мы используем минимальное значение в 25 dB для отношения сигнал/шум в звуковой системе в аудитории с большим количеством открытых микрофонов.
Скажем, в той же системе самый громкий звук, который система может произвести линейным способом, будет 110 dBA в том же положении слушателя.
Даже если система эксплуатируется на среднем уровне в 90 dBA, пики такого масштаба, безусловно, возможны. Наивысший программный пик будет определяться используемым громкоговорителем и усилителем мощности, подключенным к нему. Мы сейчас имеем один ингредиент, который требуется, чтобы найти динамический диапазон системы.
Если самым громким компонентом шума является гул от кондиционера, который находится на уровне 35 dBA, то динамический диапазон системы некуда увеличивать (110 dBA — 35 dBA = 75 dBA). Динамический диапазон может быть увеличен только путем отключения кондиционера, чтобы удалить гул.
Как вы можете видеть из этих примеров, среда определяет и динамический диапазон, и отношение сигнал/шум звуковой системы. Поскольку большинство электронных компонентов в системе имеют динамический диапазон порядка 100 dB или больше, звуковая система сама по себе никогда не должна быть слабым звеном, когда дело доходит до конечного результата для слушателя. Профессиональная система должна иметь динамический диапазон не менее 96 dB со всеми работающими электронными устройствами.