
- •4. Максиминный и минимаксный принципы игроков. Показатели эффективности и неэффективности чистых стратегий.
- •5. Максимин и минимакс игры. Максиминные и минимаксные стратегии. Нижняя и верхняя цена игры в чистых стратегиях. Соотношение между ними.
- •Критерий решения игры в чистых стратегиях.
- •Доказательство утверждения .
- •Теорема об удовлетворительности игровой ситуации для игрока a.
- •Теорема об удовлетворительности игровой ситуации для игрока b
- •Равновесие в антагонистической игре.
- •Смешанные стратегии. Функция выигрыша и цена игры в смешанных стратегиях.
- •Теорема о существовании показателей эффективности и неэффективности смешанных стратегий в антагонистической игре.
- •Теорема о существовании нижней и верхней цен игры в смешанных стратегиях.
- •Теорема о соотношении нижней и верхней цен игры в чистых и смешанных стратегиях.
- •Основная теорема матричных игр Джона фон Неймана и седловая точка функции
- •Аналитическое решение игры 2×2 в смешанных стратегиях.
- •Геометрический метод нахождения цены игры 2×2 и оптимальных стратегий игрока a.
- •Геометрический метод нахождения цены игры 2×2 и оптимальных стратегий игрока b.
- •Геометрический метод нахождения цены игры 2×n и оптимальных стратегий игрока a.
- •Геометрический метод нахождения цены игры m×2 и оптимальных стратегий игрока b.
- •2)В общем случае схема решения игры 2xn или nx2 графическим методом состоит в следующем.
- •Доминирование смешанных стратегий для игрока a.
- •Доминирование смешанных стратегий для игрока b.
- •Решение матричной игры m×n сведением к задаче линейного программирования для игрока a.
- •Решение матричной игры m×n сведением к задаче линейного программирования для игрока b.
- •Основные понятия и определения теории игр с природой.
- •Игры с природой. Показатель благоприятности состояния природы. Риск игрока, принимающего решение. Матрица рисков. Принятие решений в условиях риска и неопределённости.
- •Критерий Байеса оптимальности чистых стратегий относительно выигрышей.
- •Критерий Байеса оптимальности чистых стратегий относительно рисков.
- •Критерий Лапласа оптимальности чистых стратегий относительно выигрышей.
- •Критерий Лапласа оптимальности чистых стратегий относительно рисков.
- •Критерий (крайнего пессимизма) Вальда оптимальности чистых стратегий.
- •Максимаксный критерий (крайнего оптимизма) оптимальности чистых стратегий.
- •Критерий пессимизма – оптимизма Гурвица оптимальности чистых стратегий относительно выигрышей.
- •Определение показателей оптимизма и пессимизма игрока, принимающего решения по критерию Гурвица относительно выигрышей.
- •Учёт выигрышей по критерию Гурвица крайним пессимистом, крайним оптимистом и нейтралом.
- •Критерий Севиджа
- •Миниминный критерий.
- •Критерий пессимизма – оптимизма Гурвица оптимальности чистых стратегий относительно рисков.
- •Критерий Гермейера оптимальности чистых стратегий
- •Критерий Ходжа – Лемана оптимальности чистых стратегий относительно выигрышей.
- •Основные понятия и определения в теории неантагонистических (бескоалиционных) игр. Способы задания неантагонистической игры.
- •Стратегическая форма игры. Чистые и смешанные стратегии игроков в неантагонистических (бескоалиционных) играх. Доминирование стратегий.
- •Равновесие по Нэшу в чистых стратегиях.
- •Семейная пара принимает решение о месте куда они могут пойти в свободное время. Так он предлагает футбол, а она балет
- •Равновесие по Нэшу в смешанных стратегиях.
- •46. Аналитическое решение биматричных игр 2×2.
- •Аналогичный анализ можно провести для второго игрока.
- •47. Геометрическое решение биматричных игр 2×2
- •48. Модель дуополии по Курно.
- •49. Модель дуополии по Бертрану.
- •50. Модель «Проблема общего».
- •51. Оптимальность по Парето в неантагонистических (бескоалиционных) играх.
- •52. Позиционная форма игры.
- •53. Понятие о конечных играх с совершенной информацией.
- •54. Стратегическая форма позиционной игры с совершенной информацией.
- •55. Равновесие по Нэшу в позиционной игре с совершенной информацией.
- •56. Обратная индукция и позиционные игры с совершенной информацией.
- •57. Модель дуополии по Штакельбергу.
- •58. Модель последовательного торга.
- •59. Модель «инвесторы и банк».
59. Модель «инвесторы и банк».
Представим
следующую ситуацию. Два инвестора
вкладывают по D
долларов в банк. Банк инвестировал эти
средства в долгосрочный проект. Если
форс-мажорные обстоятельства заставляют
банк ликвидировать свои инвестиции до
того, как проект «созревает», то он
покрывает некоторую сумму
,
где
.
Если банк позволяет проекту «созреть»,
то проект принесёт
,
.
Есть два
периода, когда вкладчики могут забрать
свой вклад: период 1 – до «созревания»,
период 2 – после созревания. Для упрощения
не будем учитывать дисконтирование.
Если оба вкладчика забирают вклады в
период 1,
то оба получают по r
и игра заканчивается. Если только один
вкладчик забирает в период 1, то он
получает D,
а второй получает
.
Наконец, если ни один вкладчик не забирает
в период 1, то проект «созревает», и оба
вкладчика забирают свои деньги в
период 2,
и каждый получает по R.
Если только один вкладчик забирает
деньги в период 2, то он получает
,
другой получаетD.
Если, наконец, ни один не забирает в
период 2, то банк возвращает по R
каждому.
Дерево игры изображено на рис. 8.16.
Рис. 8.16.
Без строгой формализации игру в период 1 можно изобразить следующим образом:
|
Забирать |
Не забирать |
Забирать |
(r, r) |
(D, 2r − D) |
Не забирать |
(2r − D, D) |
(Шаг 2) |
Для периода 2:
|
Забирать |
Не забирать |
Забирать |
(R, R) |
(2R − D, D) |
Не забирать |
(D, 2R − D) |
(R, R) |
Рассмотрим
внимательно матрицу для периода 2.
Поскольку
и
,
то в соответствии с принципом
последовательной рациональности можем
перейти к матрице для периода 1:
|
Забирать |
Не забирать |
Забирать |
(r, r) |
(D, 2r − D) |
Не забирать |
(2r − D, D) |
(R, R) |
Т.к.
и
,
то получаем два равновесия по Нэшу,
дающие выигрыши (r,
r)
и (R,
R).
Принцип рационализации даёт нам
окончательное решение (R,
R).