
- •Российско-таджикский (славянский) университет
- •Предисловие
- •Душанбе, 30.05. 2012 г. Автор
- •Раздел I. Семинарские занятия
- •Раздел II. Практические занятия
- •Раздел I Темы, содержания и вопросы семинарских занятий
- •Тема 1. Науки о природе
- •Цели и задачи изучения предмета
- •1.2. Фундаментальные и прикладные науки
- •1.3. Дифференциация и интеграция наук
- •1.4. Эмерджентные свойства объектов природы
- •1.5. Методологические и трансдисциплинарные идеи
- •Вопросы для самоконтроля
- •Тема 2. Наука как часть культуры
- •2.1. Естественнонаучная и гуманитарная культуры
- •2.2. Наука – ведущая форма культуры ххi века
- •2.3. Этика науки и биоэтика
- •Вопросы для самоконтроля
- •Тема 3. Познание природы
- •3.1. Природа естественное окружение человека.
- •3.2. Левополушарное и правополушарное мышление
- •3.3. Классическое и неклассическое представление природы
- •Вопросы для самоконтроля
- •Тема 4. Ненаучные и научные картины мира
- •4.1. Ненаучные картины мира
- •4.2. Научные картины мира
- •4.2.1. Механическая картина мира
- •4.2.2. Электромагнитная картина мира
- •4.2.3. Квантово-полевая картина мира
- •4.2.4. Эволюционно - синергетическая картина мира
- •Вопросы для самоконтроля
- •Тема 5. Свойства пространства и времени
- •5.1. Свойства времени
- •5.2. Свойства пространства
- •5.3. Однородности пространства и времени и законы сохранения.
- •3. Специальная и общая теория относительности.
- •5.5. Фундаментальные физические величины
- •Вопросы для самоконтроля
- •Тема 6. Концепция моделирование физических объектов
- •6.1.Корпускулярная традиция описания природы
- •6.2. Континуальная традиция описания природы
- •Вопросы для самоконтроля
- •Тема 7. Элементарные частицы и их классификации
- •7.1. История открытие элементарных частиц
- •Вопросы для самоконтроля
- •7.2. Физический вакуум
- •Вопросы для самоконтроля
- •7.3. Кварковая теория адронов
- •Вопросы для самоконтроля
- •7.4. Классификация элементарных частиц.
- •Вопросы для самоконтроля
- •Тема 8. Силы в природе
- •8.1. Воздействие и взаимодействие
- •Вопросы для самоконтроля
- •8.2. Виды фундаментальных взаимодействий
- •Вопросы для самоконтроля
- •8.3. Сильное взаимодействие
- •Вопросы для самоконтроля
- •8.4. Электромагнитное взаимодействие
- •Вопросы для самоконтроля
- •8.5. Слабое взаимодействие
- •Вопросы для самоконтроля
- •8.6. Гравитационное взаимодействие
- •Вопросы для самоконтроля
- •8.7. Единая теория поля
- •Вопросы для самоконтроля
- •8.8. Теория «Великое объединение»
- •Вопросы для самоконтроля
- •Тема 9. Этапы развития химических наук
- •9.1. Химические модели объектов природы
- •Вопросы для самоконтроля
- •9.2. История развития химических наук
- •Вопросы для самоконтроля
- •9.3. Атомно-молекулярное учение
- •Вопросы для самоконтроля
- •9.4. Учение о составе вещества
- •Вопросы для самоконтроля
- •9.5. Учение о структурной химии
- •Вопросы для самоконтроля
- •9.6. Учение о химических процессах
- •Вопросы для самоконтроля
- •Тема 10. Этапы развития биологических наук
- •10.1. Натуралистическая биология
- •Вопросы для самоконтроля
- •10. 2. Физико-химическая биология
- •Вопросы для самоконтроля
- •10.3. Эволюционная биология
- •Вопросы для самоконтроля
- •Тема 11. Структурные уровни организации живых систем
- •11.1. Молекулярно-генетический уровень
- •Вопросы для самоконтроля
- •11.2. Онтогенетический уровень
- •Вопросы для самоконтроля
- •11.3. Популяционно-видовой уровень
- •Вопросы для самоконтроля
- •11.4. Экосистемный уровень
- •Вопросы для самоконтроля
- •11.5. Биосферный уровень. Ноосфера
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •Тема 12. Возникновение квантовой механики
- •12.1. Трудности в классической физике. Принцип соответствия
- •Вопросы для самоконтроля
- •12.2. Создание квантовой механики. Принцип неопределенности. Принцип «запрета» Паули.
- •Вопросы для самоконтроля
- •12.3. Применение квантовой механики. Принцип дополнительности
- •Вопросы для самоконтроля
- •12.4. Квантовая биология (Волновая генетика)
- •Вопросы для самоконтроля
- •Тема 13. Концепция микросостояния объектов природы
- •13.1. Неклассические процессы и явления в природе
- •Вопросы для самоконтроля
- •13.2. Минимальное квантовое взаимодействие в микромире
- •Вопросы для самоконтроля
- •13.3. Микросостояние микрочастицы
- •Вопросы для самоконтроля
- •Тема 14. Концепция макросостояния объектов природы
- •14.1.Тепловое равновесие как макросостояния
- •Вопросы для самоконтроля
- •14.2. Энтропия
- •Вопросы для самоконтроля
- •14.2. Минимальное тепловое воздействие или минимальное изменение энтропии
- •Вопросы для самоконтроля
- •Тема 15. Соотношения неопределенностей
- •15.1. Соотношение неопределенностей Гейземберга
- •Вопросы для самоконтроля
- •15.2. Соотношение неопределенности Эйнштейна
- •Вопросы для самоконтроля
- •15.3. Универсальное соотношение неопределенности Шредингера
- •Вопросы для самоконтроля
- •Тема 16. Синергетка – наука о самоорганизации
- •16.1. Моделирование сложных систем
- •Вопросы для самоконтроля
- •16.2. Характеристики самоорганизующихся систем
- •Вопросы для самоконтроля
- •16.3. Закономерность самоорганизации
- •Вопросы для самоконтроля
- •16.4. Глобальный эволюционизм
- •Вопросы для самоконтроля
- •Тема 17. Эволюция Вселенной
- •17.1. Теория «Большого взрыва»
- •Вопросы для самоконтроля
- •17.2. Причины задержки коллапса во Вселенной
- •Вопросы для самоконтроля
- •17.3. Метагалактика
- •Вопросы для самоконтроля
- •17.4. Модели Вселенной
- •Вопросы для самоконтроля
- •Тема 18. Галактики и звезды
- •18.1. Галактики
- •Вопросы для самоконтроля
- •18.2. Звезды
- •Вопросы для самоконтроля
- •Тема 19. Эволюция Солнечной системы
- •19.1. Происхождение Солнечной системы
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •19.2. Две группы планет Солнечной системы
- •Вопросы для самоконтроля
- •19.3. Солнечно-земные связи
- •Вопросы для самоконтроля
- •Тема 20. Эволюция на геологическом уровне
- •20.1. Формирование и эволюция Земли
- •Вопросы для самоконтроля
- •20.2. Характеристики планеты - Земли
- •Вопросы для самоконтроля
- •20.3. Строение Земли
- •Вопросы для самоконтроля
- •20.4. Динамики геосфер: литосфера, гидросфера, атмосфера и биосфера
- •Вопросы для самоконтроля
- •20.5. Теория тектоники плит
- •Вопросы для самоконтроля
- •Тема 21. Экологии и здоровье
- •21.1. Основы экологии
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •21.2. Экология и здоровье человека
- •Вопросы для самоконтроля
- •Тема 22. Концепция происхождения жизни на Земле
- •22.1. Сущность жизни
- •Вопросы для самоконтроля
- •22.2. Теория Опарина–Холдейна о происхождении жизни
- •Вопросы для самоконтроля
- •22.3. Эволюция жизни.
- •Вопросы для самоконтроля
- •Тема 23. Эволюционные процессы в природе
- •23.1. История развития эволюционных идей
- •Вопросы для самоконтроля
- •23.2. Теория эволюции
- •Вопросы для самоконтроля
- •23.3. Микроэволюция и макроэволюция
- •23.4. Союз генетики и дарвинизма или теории синтетической эволюции
- •Вопросы для самоконтроля
- •Тема 24. Эволюции органического мира
- •24.1. Осадочные породы
- •24.2. Геохронологическая шкала
- •Вопросы для самоконтроля
- •24.3. Эволюция растительного мира
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •24.4. Эволюция животного мира
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •Тема 25. Естественное происхождение человека
- •25.1. Теории происхождения человека
- •Вопросы для самоконтроля
- •25.2. Современные концепции антропогенеза
- •Вопросы для самоконтроля
- •25.3. Этапы эволюции человека
- •Вопросы для самоконтроля
- •25.4. Социальная эволюция человека
- •25.5. Культурная эволюция
- •Вопросы для самоконтроля
- •Тема 26. Вопросы здорового образа жизни
- •26.1. Здоровье
- •26.2. Принципы здорового образа жизни
- •Вопросы для самоконтроля
- •26.3. Соблюдение условий рационального питания
- •Вопросы для самоконтроля
- •26.4. Рациональный режим труда и отдыха.
- •26.5. Профлактика вредных привычек
- •26.6. Путь к единой общечеловеческой культуре
- •Вопросы для самоконтроля
- •Раздел II Темы и содержания практических занятий
- •Тема 1. Методы научного познания
- •Практика – критерий истинности знания
- •1.2. Методы научного познания
- •1.3. Псевдонауки
- •1.4. Системный метод научного познания
- •Тема 2. Экспериментальные данные и их обработка
- •1.1. Современные методы научного исследования
- •Ошибки измерений
- •Обработка экспериментальных данных
- •1.4. Примеры решения задач Пример 1
- •Решение
- •Пример 2
- •Решение
- •Пример 3
- •Решение
- •1.5. Решите задачи
- •Тема 3. Кинематика нерелятивистские движения
- •3.1. Методические указания к решению задач Основные формулы
- •Тема 4. Динамика
- •4.3. Решите задачи
- •Тема 5. Гравитационное взаимодействие
- •Тема 6. Механическая работа. Мощность механизмов. Энергия.
- •Пример 3
- •Решение
- •6.3. Решите задачи
- •Тема 7. Импульс. Закон сохранения импульса
- •Пример 2
- •Решение
- •7.3. Решите задачи
- •Тема 8. Динамика вращательного движения. Законы сохранения момента импульса
- •8.1. Методические указания к решению задач
- •Основные формулы
- •8.2. Примеры решения задач Пример 1
- •Решение
- •Ответ: 2,8 м/с2. Пример 2
- •Решение.
- •8.3. Решите задачи
- •Тема 9. Тепловые процессы
- •9.1. Методические указания к решению задач по молекулярной физике и термодинамике Основные формулы
- •9.2. Примеры решения задач Пример 1
- •Решение
- •Ответ: Пример 2
- •Решение
- •9.3. Решите задачи
- •Тема 10. Электрические процессы
- •10.1. Методические указания к решению задач
- •Основные формулы
- •10.2. Примеры решения задач Пример 1.
- •Решение
- •Ответ: Пример 2
- •Решение.
- •7.3. Решите задачи
- •Тема 11. Постоянный электрический ток
- •Пример 2
- •Решение.
- •11.3. Решите задачи
- •Тема 12. Магнитные процессы
- •12.3. Решите задачи
- •Тема 13. Колебательные и волновые процессы
- •13.1. Методические указания к решению задач
- •13.2. Примеры решения задач Пример 1
- •Решение
- •Пример 2
- •Решение
- •13.3. Решите задачи
- •Тема 14. Оптика
- •14.1. Методические указания к решению задач по оптике Основные формулы
- •Ответы:
- •14.3. Решите задачи
- •Тема 15. Релятивистское движение.
- •15.1. Методические указания к решению задач Основные формулы
- •Тема 16. Корпускулярно-волновые свойства
- •16.1. Методические указания к решению задач Основные формулы
- •16.3. Решите задачи
- •Тема 17. Ядерные процессы
- •17.1. Методические указания к решению задач Основные формулы
- •17.2. Примеры решения задач Пример 1
- •Решение
- •Тема 18. Химические процессы
- •18.1. Методические указания к решению задач по химии
- •Ответ: 10. Пример 3
- •Ответ: .
- •18.3. Решите задачи
- •Справочные материалы
- •Универсальные физические постоянные
- •2. Соотношения между единицами измерений физических величин
- •3. Астрономические величины
- •Список использованные литературы
Вопросы для самоконтроля
1. Что изучает биология на молекулярно-генетическом уровне?
2. Какие шесть химических элементов являются органогены?
3. Какие гигантские биополимеры являются основой живых организмов?
4. Какие биополимеры являются «информационными» макромолекулами?
5. Какие макромолекулы обладают свойством хиральностью?
6. Из каких молекул образуется вещество хромосом?
7. Кем и в каком году, получено доказательство генетической роли ДНК?
8. Кто и в каком году, раскрыли структуру молекулы ДНК?
9. Сколько нуклеотидов содержит молекула ДНК?
10. Сколько нуклеотидов содержит молекула РНК?
11. Что такое ген и из скольких нуклеотидов он состоит?
12. Сколько тысяч генов содержит организм человека?
13. Кто и когда расшифровал генетический код?
14. Из сколько нуклеотидов состоит код (кодон или триплет)?
15. Какой клеточный органоид синтезирует белок?
16. Каким образом, рибосома синтезирует белок?
17. Почему считается, что генетический код универсален?
18. Почему считается, что генетический код уникален?
19. Что такое репликация?
20. Что такое транскрипция?
21. Что такое трансляция?
11.2. Онтогенетический уровень
Онтогенетический уровень – это уровень отдельных биологических индивидов: одноклеточных и многоклеточных. Термин «онтогенез» был введен Э. Геккелем, для обозначения особенностей структурной и функциональной организации отдельных организмов. Индивидуальное развитие организма, в котором происходит реализация наследственных признаков, называется онтогенезом. Функционирование и развитие организма изучает физиология.
Одноклеточные и многоклеточные организмы являются отдельными биологическими особями. Минимальная живая система является клетка. Науку, изучающую клетку, называют цитологией. Цитологию можно назвать физиологией клетки. Новые клетки образуются путем деления материнской клетки.
Впервые клетка была описана английским ученым Робертом Гуком, рассматривая кусочек пробки под микроскопом. Он увидел стенки отмерших клеток. Затем А. Левенгук показал, что ткани многих растительных организмов построены из клеток. Он же описал одноклеточные организмы и бактерии.
В 30-е годы XIX века было открыто и описано клеточное ядро. Удалось увидеть деление растительных клеток. На основании этих данных, в 1839 году, немецкими учеными Т. Шванном и М. Шлейденом установлена однотипность клеточной структуры растения и животных, тем самим они построили клеточную теорию. Клеточная теория доказывает единство всей живой природы.
К концу XIX века, были обнаружены составные части клетки - митохондрии, нуклеиновые кислоты и аппарат Гольжи. Клетки отличаются друг от друга, в зависимости от строения и функции. Существуют нервные, костные, мышечные, секреторные клетки. Размер клетки может варьировать от 0,1 мкм до 155 мм (яйцо страуса в скорлупе).
В живом организме могут функционировать до 1015 клеток. Все клетки состоят из трех основных частей: двухслойной мембраны, цитоплазмы и ядра. Кроме того, некоторые клетки содержат центриоли и пластиды. В цитоплазме располагаются органеллы: митохондрии, рибосомы, эндоплазматическая сеть, клеточный центр (центриолей) и ядро.
Клетки растут и размножаются. Перед делением число хромосом удваивается. Деление клеток, при котором происходит одинаковое распределение генетического материала между дочерними клетками, называется митозом.
В зависимости от типа клеток, все организмы делятся на две группы: прокариоты – клетки, лишенные ядра (к ним относятся бактерии и сине-зеленые водоросли) и эукариоты – клетки, содержащие хорошо оформленные ядра. К эукариотам относятся клетки простейших, грибов, растений и животных.
Считают, что первыми на Земле появились прокариоты, затем эукариоты. В зависимости от типов питания, все организмы делятся на две группы: автотрофные (бактерии с хемосинтезом и растения с фотосинтезом) и гетеротрофные, которые не могут обходиться без органической пищи.
Существует три основных типа метаболизма (обмена веществ). 1. Катаболизм – процесс диссимиляции, в ходе которой происходит расщепление макромолекул с выделением энергии. 2. Амфоболизм - процесс образования, в ходе катаболизма мелких молекул, которые принимают участие в строительстве более сложных молекул. 3. Анаболизм - процесс ассимиляции, в ходе которого происходит биосинтез макромолекул с расходованием энергии АТФ.
Многоклеточные организмы делятся на три царства: грибы, растения и животные. Наука, изучающая жизнедеятельность многоклеточных организмов, называется физиологией. По сути дела физиология изучает процесс онтогенеза, т.е. развитие организма от рождения до смерти. Автор термина «онтогенез» сформулировал биогенетический закон. Согласно этому закону, онтогенез в краткой форме повторяет филогенез. Следовательно, отдельные организмы в сокращенной форме проходят все стадии развития своего вида.
Живой организм образуется в результате взаимодействия генотипа (совокупности генов одного организма) с фенотипом (комплексом внешних признаков организма, сформировавшимся в ходе его индивидуального развития). Живые организмы являются открытыми системами с гомеостатическими обратными связями. Термин «гомеостаз» введен в 1932г. американским физиологом У. Кэнноном.