
- •2. Системний підхід
- •3. Популяційна екологія
- •4. Закони, аксіоми, принципи, правила популяційної біології.
- •2. Поняття про популяцію
- •2.1. Підходи до визначення популяції
- •2.2. Критерії виділення популяцій
- •2.3. Структура популяцій
- •2.4. Організація популяцій і способи їх формування
- •3. Енергетика популяцій
- •3.1. Концепція енергетичного балансу
- •3.2. Розподіл енергії в біосфері
- •3.3. Розподіл енергії в організмах та популяціях
- •4. Екологія популяцій
- •4.1. Популяція і зовнішнє середовище
- •4.3. Екологічні фактори
- •4.4. Комплексні групи факторів
- •4.5. Екотоп, біотоп та екологічна ніша
- •5. Географія популяцій. Територіальні закономірності популяцій
- •5.1. Загальні підходи
- •5.2. Розподіл організмів у популяції
- •5.3. Розподіл популяцій у межах ареалу
- •5.4. Географічна мінливість популяцій
- •6. Динаміка популяцій 6.1. Життя організмів, популяцій та видів
- •6.2. Динаміка чисельності популяцій
- •6.3. Ріст чисельності популяцій
- •Експоненційний ріст
- •Логістичний ріст
- •6.4. Виживання популяцій
- •6.5. Швидкість відновлення популяцій
- •6.6. Врівноважена щільність популяції'
- •6.8. Концепція саморегуляції і коливання чисельності популяцій
- •7.2. Елементарна еволюційна система (eec)
- •7.3. Елементарне еволюційне явище (еея)
- •7.4. Елементарний еволюційний матеріал (еем)
- •7.5. Елементарні еволюційні фактори (ееф)
- •7.6. Лускові механізми еволюції (пме)
- •7.7. Моделі видоутворення
- •7.8. Мікрс—, макро- та синеволюція
- •8. Адаптація популяцій
- •8.1. Поняття про адаптацію
- •8.3. Адаптація і популяція
- •9. Взаємодія популяцій
- •9.1. Типи взаємодій
- •9.2. Конкуренція
- •9. Взаємодія популяцій
- •9.1. Типи взаємодій
- •9.2. Конкуренція
- •. 9.3. Хижацтво
- •9.4. Детритофагія
- •9.5. Мутуалізм
6.6. Врівноважена щільність популяції'
Збільшення чисельності будь—якої популяції могло б відбуватися в геометричній прогресії, оскільки особини, виростаючи, за своє життя дають більше двох нащадків. Геометрична швидкість росту в ідеальних умовах є біологічною внутрішньою властивістю популяції. І якби цей ріст не стримували ресурси, то чисельність за короткий час досягла б абстрактних цифр. Але насправді так не буває.
Популяція коралів не може збільшуватись, якщо вони зайняли всю поверхню морського дна, число хижвків ніколи не може перевищувати число їх жертв на даній території тощо. Тому будь-яка популяція в певних умовах протягом тривалого часу мусить знаходитись в такому стаціонарному стані або рівновазі, коли Ь = сі, або Р0 = 1. Якщо Ь > сі, то чисельність популяції збільшиться і зростатиме щільність, або збільшаться її розміри, а якщо сі > Ь, то чисельність, тобто розміри або щільність, мають скоротитися. Якщо ж Р.0 > 1, то популяція або середовище мають відреагувати таким чином, щоб вирівняти цей процес, тобто після цього повинен настати час, коли сі > Ь. Теоретичні розрахунки Дж. Холдейна свідчать про те, що інші варіанти мало ймовірні.
Якщо взяти комаху, яка розмножується лише раз на рік і завершує протягом року повний цикл свого розвитку з середньою чистою швидкістю відтворення (Рчо) не 1, а 1,01, то при чисельності в перший рік г>Іп і збільшенні її на другий рік (п+1) до Мп+1, рівняння матиме вигляд N = МПИ На наступний, третій, рік, відповідно, чисельність буде дорівнювати:
Мп+2 = Ч,+іРх> = (6.19)
Розрахунки свідчать про те, що через 1000 років популяція збільшить чисельність в ^Ро10", тобто в 21 тис. разів. Якщо ж, навпаки, Р.0 = 0,99, то через 1000 років її чисельність буде становити 0,00043 від вихідної, тобто популяція вимре. Оскільки більшість видів не вимирають і не збільшують свою чисельність так швидко, то, хоча в окремі роки величина Рч0 може коливатись в один чи інший бік, але за тривалий період Р^ = 1.
Тобто з цих розрахунків витікає теоретичний висновок про те, що популяція повинна мати врівноважену щільність, а значить і механізми для її підтримки. По відношенню до останніх у вчених єдиної думки немає, що було причиною гострих дискусій в 50-ті рр. Австрійський ентомолог А. Ніколсон (Мікоівоп, 1957) вважав, що динаміка чисельності будь-якої популяції — це автоматично відрь'ульований процес, а дія факторів, що контролюють цю чисельність, визначається щільністю популяції. Іншими словами, підтримка врівноваженої щільності відбувається за рахунок внутрішньополуляційних механізмів, хоча вплив зовнішніх факторів не відкидається. Такий підхід дістав назву регуляціоналізму.
Принципово іншим підходом є стохастичний, прибічники якого вважають, що зовнішні екологічні, екосистемні чинники врівноважують щільність, визначають посилення чи послаблення чисельності популяції через відбір, і ця величина постійно коливається залежно від зміни екологічних чинників. Зокрема, аастралійські ентомологи Г. Андреварта та Л. Берн (Andrewarta, Birch, 1954) вважали, що популяції тварин обмежені нестачею чи недоступністю ресурсів (їжі або місця для життя), а швидкість росту популяції може мати позитивні значення лише короткий період. Врівноваження досягається, по суті, усередненими розрахунками коливань за багато років.
Як показали подальші дискусії, і перші, і другі мають рацію, бо щільність врівноважується як внутрішніми, так і зовнішніми чинниками.
Спочатку детальніше розглянемо дію внутрішньопопуляційних механізмів. Теоретично спосіб регулювання чисельності в залежності від щільності можна собі уявити таким чином. Якщо щільність популяції низька відносно ресурсів, то b > d і чисельність популяції зростатиме, але з ростом чисельності смертність буде зростати, швидше, ніж народжуваність, і коли щільність популяції перейде той рівень, який здатні забезпечити реальні ресурси, то b < d і чисельність скоротиться. Така рівновага щільності (К), коли b = d, визначається ємністю середовища. Для того, щоб досягти точки К може: а) зменшуватися народжуваність; б) зростати смертність; в) одночасно падати народжуваність і зростати смертність (рис. 6.8).
Рис. 6.8. Співвідношення народжуваності (Ь) і смертності (сі), яке визначає величину граничної (рівноважної) щільності (К) у двох популяціях, що різняться середньою народжуваністю
Якщо взяти дві популяції з однаковою смертністю ^), але різною народжуваністю (Ь., та Ь2), то рівновага щільності (К., та К2) буде різною, а однаковою (К1 = К2) вона стане в разі зниження народжуваності в одній або підвищення смертності в іншій. Тобто досягти К у різних популяціях можна різними шляхами і ця характеристика ще нічого не говорить про інтенсивність чи природу процесів, які визначають рівновагу. Для такої оцінки нам потрібно перейти від динаміки чисельності до динаміки народжуваності та смертності, на які впливають зовнішні фактори.
6.7. Ємність середовища та регуляція чисельності популяцій
Щільність популяції регулюється рівновагою між внутрішнім для даної популяції потенціалом росту і впливом зовнішніх факторіа, середовищем, ресурсами. Ресурси поділяють на два типи: невідтворювані (простір, місця гніздування, зростання видів), які можуть бути повністю використані і визначають верхню межу чисельності популяції, відтворювані (їжа, вода, поживні речовини), які використовуються постійно і можуть знизитися до такого рівня4, котрий не забезпечує подальший ріст популяції, ар.* вони ніколи не виснажуться повністю. Досягаючи чисельності, яка відповідає ємності середовища, потреби в ресурсах врівноважуються з їх експлуатацією; подальше пониження запасів ресурсів призводить до скорочення популяції, а підвищення — до зростання останньої.
. Природне середовище не буває стабільним і мінливість факторів, ресурсів впливає на виживання, плодючість організмів, напрямок і швидкість росту популяції. Характер мінливості цих ознак залежить не тільки від мінливості зовнішніх умов, а й від внутрішньої організації популяції. Організми з тривалим життям, повільним розмноженням мають більшу гомеостатичність, менш чутливі до зміни зовнішніх умов середовища (птахи відкладають постійну кількість яєць, ссавці народжують приблизно однакову кількість нащадків і через однаковий період), а з короткою тривалістю життя, високими репродуктивними ознаками (мікроорганізми), зі значною амплітудою змінюють чисельність (в сотні і тисячі разів) залежно від флуктуацій показників середовища Щільність залежить від ряду факторів, наприклад зміни клімату, ресурсів, які можуть чергуватись. Так Холл (Hall, 1964), досліджуючи сезонний хід динаміки чисельності дафнії (Daphnia galeata mendotae) в невеликому озері в США, встановив два піки її чисельності (кінець весни і осінь), розділені зимовим і літнім мінімумами (рис. 6.11). Якщо зимовий мінімум визначався пониженням температури і запасів їжі, то літній вдалося виявити лише після дослідження співвідношення народжуваності і смертності. Максимум останньої влітку переважав народжуваність і показник швидкості росту популяції ().) мав від'ємні значення. Причиною цього було інтенсивне розмноження влітку рачка лептодори (/.ергос/ога кіпсЯі), що живився дафнією.
У природі частіше одночасно діють не один, а кілька факторів і їх сукупність визначає зміну характеристик популяції. Вичленити роль кожного фактора буває дуже важко і для цього застосовують метод множинної регресії. Будують ординаційні матриці, на яких аналізують кожен фактор окремо. Так Дж. Девідсон та Г. Андреварта (Davidson, Andrewarta, 1948), використовуючи метод множинної регресії, знаходили залежність зміни чисельності трипсів (Thrips imaginis) як лінійну функцію кількох незалежних змінних: — сума ефективних температур, що визначають ріст рослин, котрими живиться трипс; х2 — сумарна кількість опадів у період, коли спостерігалися максимуми розвитку трипсів; х3 — середня ефективна температура в цей період; х4 — значення х1 в попередній рік. Отримане рівняння мало такий вигляд:
lg v = -2,39 + 0.125х! = 0,2019х2 + 0,1866х3 + 0,085х4, (6.20)