Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические задачи для бакалавров.doc
Скачиваний:
90
Добавлен:
20.11.2019
Размер:
2.31 Mб
Скачать

1.2 Матричная алгебра

Матрицей размера называется прямоугольная таблица

,

составленная из элементов и содержащая строк и столбцов.

Положение элементов в таблице определяется двойным индексом , первый означает номер строки, второй номер столбца на пересечении которых стоит данный элемент. Запись группы величин в виде матрицы не предусматривает каких-либо действий над ними. Это лишь одна из форм упорядоченной записи в виде условной таблицы.

Если в матрице строки сделать столбцами, а столбцы строками, то получается транспонированная матрица .

Квадратной матрицей называется матрица, в которой число строк совпадает с числом столбцов. Если элементы в квадратной матрице располагаются симметрично относительно главной диагонали, то такая матрица называется симметричной.

Диагональной матрицей называется матрица, в которой все элементы, кроме стоящих на главной диагонали, равны 0.

Единичная матрица, это диагональная матрица, у которой на главной диагонали стоят 0.

Матричная алгебра это множество матриц плюс множество операций, которые можно выполнять над матрицами. В любой алгебре есть два замечательных числа – это ноль и единица. Ноль не изменяет число при сложении, единица не изменяет число при умножении, т.е.

.

В алгебре матриц также есть подобные элементы – это нулевая матрица, она играет роль нуля в алгебре матриц и это единичная матрица соответствующей размерности, она играет роль единицы в алгебре матриц.

Сложение матриц. Складывать можно только матрицы, имеющие одинаковую размерность. Сложением двух матриц называется операция, при которой складываются элементы, стоящие на одинаковых местах в соответствующих таблицах.

Пример:

Умножение матрицы на число. Для того чтобы умножить матрицу

на число , необходимо каждый элемент этой матрицы умножить на число .

Пример:

Умножение матриц. Умножение матриц в алгебре матриц не коммутативно. Для того, чтобы произведение матриц существовало необходимо чтобы число столбцов первой матрицы равнялось числу строк второй матрицы. Если матрица имеет размерность , а матрица размерность , то матрица имеет размерность . В качестве элементов расположенных на пересечении -той строки и -го столбца матрицы произведения , принимают суммы попарных произведений, расположенных на одинаковых местах указанных строк матрицы – множимого и столбцов матрицы- множителя.

Так как произведение матриц не коммутативно, следует различать умножение матрицы на некоторую другую матрицу слева и справа, причем в общем случае эти матрицы могут иметь разную размерность.

Пример:

1.3 Определитель матрицы и его свойства

Основной числовой характеристикой квадратной матрицы является ее определитель. Рассмотрим квадратную матрицу второго порядка

.

Определителем или детерминантом второго порядка называется число, вычисленное по следующему правилу

Например,

Рассмотрим теперь квадратную матрицу третьего порядка

.

Определителем третьего порядка называется число, вычисленное по следующему правилу

.

В целях запоминания сочетания слагаемых, входящих в выражения для определения определителя третьего порядка обычно используют правило Саррюса: первое из трех слагаемых , входящих в правую часть со знаком плюс есть произведение элементов, стоящих на главной диагонали матрицы , а каждое из двух других – произведение элементов, лежащих на параллели к этой диагонали, и элемента из противоположного угла матрицы.

Последние три слагаемые, входящие со знаком минус определяются аналогичным образом, только относительно побочной диагонали.

Пример: