Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГДС Федорів наша, 230.doc
Скачиваний:
70
Добавлен:
16.11.2019
Размер:
8.53 Mб
Скачать

Криві ямк

Дані криві симетричні відносно середини однорідних пластів. Максимум співпадає із серединою пласта. Границі потужних пластів відбивають у точках, які відповідають половині максимального значення амплітуди кривої ЯМК.

При інтерпретації кривих ЯМК у значення U0 вводять поправки за вплив свердловини, глинистої кірки, залишкового струму, а також просторової орієнтації свердловини. При цьому використовують спеціальні палетки та номограми.

ЯМК призначений для виділення пластів, що містять рухомий флюїд, визначення пористості і характеру насичення пластів, розділення нафтоносних і бітумінізованних порід.

Обмеження використання ЯМК – погані результати получаються в глинистому буровому розчині, в породах з підвищеною магнітною сприйнятливістю, в породах з малою ефективною пористістю (1,5-2 %), в тріщинуватих колекторах. ЯМК не застосовується в колекторах із в’язкою нафтою.

Недоліки ЯМК – велика тривалість вимірювань, мала глибинність (0,3 м), впливає сильно зона проникнення фільтрату промивальної рідини, метод застосовуються тільки в не обсаджених свердловинах.

3 Радіоактивні методи дослідження свердловин

Радіоактивним каротажем називають геофізичні дослідження свердловин, які засновані на вимірюванні характеристик полів іонізуючих випромінювань (природних і викликаних штучно).

Найбільше розповсюдження в практиці ГДС одержали наступні види радіоактивного каротажу:

  • гамма-каротаж, призначений для вивчення природного гамма-випромінювання гірських порід;

  • гамма-гамма-каротаж;

  • нейтронні методи;

  • імпульсні нейтронні методи.

Два останні засновані на вивченні характеристик штучно викликаних полів іонізуючого випромінювання, а саме: гамма-випромінювання та нейтронів.

3.1 Методи гамма-каротажу та спектрального гамма-каротажу Радіоактивність, основні закони радіоактивного розпаду

Радіоактивністю називається здатність нестійких ізотопів хімічних елементів самочинно перетворюватись в інші більш стійкі елементи з випромінювання альфа-, бета-, гамма-променів, а інколи і інших частинок.

Радіоактивність ізотопів, які знаходяться в природних умовах, отримала назву природної радіоактивності, а радіоактивний розпад ядер атомів при їх бомбардуванні елементарними частинками (електронами, протонами, нейтронами, альфа-частинками та іншими) – штучною радіоактивністю.

Процес перетворення одного ізотопу в інший називається радіоактивним розпадом. Радіоактивне перетворення протікає самочинно та ймовірність радіоактивного розпаду р за одиницю часу є сталою для кожного радіоактивного елементу. Відповідно, кількість актів радіоактивного розпаду dN за час d визначається кількістю радіоактивних ядер N у даний момент часу :

. (3.1)

Інтегруючи вираз (3.1), отримаємо:

. (3.2)

де lnC – стала інтегрування.

Використовуючи початкову умову =0, N=N0 отримаємо основний закон радіоактивного розпаду:

. (3.3)

Час розподілу р рівний величині, яка обернена сталій розподілу, і має розмірність часу.

Практично тривалість життя радіоактивного ізотопу більш зручно характеризувати періодом піврозпаду T1/2. Період піврозпаду T1/2 – це час, протягом якого розпадається половина початкової кількості атомів даної речовини.

Із співвідношення (3.3) отримаємо:

, (3.4)

звідси

. (3.5)

Активність радіоактивного розпаду ap, яка часто в радіометрії свердловин називається абсолютною радіоактивністю, оцінюється кількістю розпадів, що проходять в одиницю часу (розп./с):

. (3.6)

Кількість радіоактивної речовини в системі одиниць СІ виражають в кілограмах (кг).

Для оцінки радіоактивності гірської породи qп при радіометричних дослідження свердловин користуються об’ємними одиницями концентрації радіоактивних елементів. В системі одиниць СІ найбільш зручна еквівалентна частка одиниці – нанокілограм-еквівалент радію на кубічний метр породи – нкг·еквRa/м3 (10-9кг·еквRa/м3).

При розпаді радіоактивних елементів випромінюються альфа- бета-частинки та гамма-кванти, причому випромінювання гамма-квантів не є самостійним актом, воно супроводжується альфа- або бета-розпадом ядер елементів.

Альфа-промені – потік частинок, які є ядрами атомів гелію (42He), несуть подвійний додатній заряд 9,54·10-10 електростатичних одиниць та володіють найбільшою масою (6,598·10-12г) серед елементарних частинок. Швидкість альфа-частинок природних радіоактивних елементів становить – 1,39·109-2,05·109м/с.

Бета-промені – представляють собою потік частинок, які несуть одинарний від’ємний (електрони) або додатній (протони) заряд 4,77·10-10 електростатичних одиниць і мають масу 0,9035·10-27 г. Швидкість бета-частинок коливається практично від нуля до 0,998 швидкості світла.

Гамма-промені – це потік нейтральних частинок, які мають таку ж природу, що і радіохвилі, світло, рентгенівське випромінювання, і відрізняються від них тільки більш високою частотою коливань (>2,42·1018 с-1).

Швидкість розповсюдження гамма-квантів стала та у вакуумі рівна швидкості світла c=300000м/с.

Енергія гамма-кванта виражається співвідношенням:

, (3.7)

де h – стала Планка, яка рівна 6,62·10-34 Дж·с.

Довжина хвилі , яка випромінює гамма-квант, обернено пропорційна частоті коливань:

. (3.8)

Природна радіоактивність гірських порід, в основному, обумовлена наявністю в них природних радіоактивних елементів – урану 23892U і продукту його розпаду 22688Ra, торію 23290Th та радіоактивного ізотопу калію 4019K. Інші радіоактивні елементи (рубідій 8737Rb, самарій 147162La, лютецій 17671Lu та інші) характеризуються великими періодами піврозпаду, малими концентраціями в гірських породах, тому суттєвого вкладу в сумарну природну радіоактивність вони не вносять.

Найбільш високою радіоактивність відмічаються магматичні породи, найнижчою – осадові та проміжною – метаморфічні.

Пониженою радіоактивністю серед осадових утворень характеризуються хемогенні відклади (ангідрити, гіпси, кам’яна сіль, за виключенням калійної солі), а також чисті пісковики, піщаники, вапняки і доломіти. Максимальною радіоактивністю характеризуються глини, глинисті та бітумінозні сланці, фосфорити, а також калійні солі.

Високорадіоактивні різниці зустрічаються і серед чистих незаглинизованих пісків, піщаників та вапняків, якщо дані породи збагачені моноцитом, карнотитом, глауконітом, польовими шпатами та іншими мінералами, які містять радіоактивні елементи.

У деяких випадках радіоактивність гірських порід підвищується у результаті насичення їх пластовими водами, які збагачені ураном і радієм, наприклад, хлоркальцієвого та особливо сульфідно-барієвого типів.