
- •Кафедра высшей и прикладной математики
- •1.1. Предел последовательности
- •1.2. Предел функции
- •Геометрическая интерпретация. Пусть дан график функции , имеющей предел при , равный (рис.2).
- •Бесконечно малые и бесконечно большие функции
- •Свойства пределов
- •1.3. Раскрытие неопределенностей
- •1.4. Первый замечательный предел
- •1.5. Второй замечательный предел
- •2.1. Понятие производной функции
- •Формулы дифференцирования
- •2.2. Производная сложной функции
- •Пример. Найти производную функции .
- •2.3. Дифференцирование неявной функции
- •Признаки возрастания и убывания функции
- •3.1. Экстремум функции
- •3.2. Точки перегиба График функции называется выпуклым на интервале , если он расположен ниже касательной, проведенной к графику функции в любой точке этого интервала (рис. 8 а).
- •На интервале кривая выпукла , а на интервале – вогнута . Таким образом, при переходе через точку вторая производная меняет знак. Эта точка является точкой перегиба. Ее координаты .
- •3.3. Асимптоты
- •3.4. Общая схема исследования функции и построение ее графика
- •4.1. Первообразная функция и неопределенный интеграл
- •Основные свойства неопределенного интеграла
- •4.2. Непосредственное интегрирование
- •4.3. Интегрирование методом замены переменной (метод подстановки)
- •4.4. Интегрирование по частям
- •4.5. Интегрирование рациональных дробей
- •4.6. Интегрирование тригонометрических функций
- •5.1. Понятие определенного интеграла
- •Основные свойства определенного интеграла
- •5.2. Формула Ньютона-Лейбница
- •5.3. Методы интегрирования
- •7.1. Уравнение с разделяющимися переменными
- •7.2. Однородные дифференциальные уравнения первого порядка
- •7.3. Линейные дифференциальные уравнения
- •7.4. Дифференциальные уравнения второго порядка
- •7.5. Дифференциальные уравнения второго порядка с постоянными коэффициентами
- •8.1. Необходимый признак сходимости числового ряда
- •8.2. Достаточные признаки сходимости знакоположительных рядов
- •8.3. Знакочередующиеся ряды
- •Обобщенный признак Даламбера сходимости степенного ряда Для степенного ряда , где , составим предел модуля отношения последующего члена ряда к предыдущему
- •ЛиТература
3.2. Точки перегиба График функции называется выпуклым на интервале , если он расположен ниже касательной, проведенной к графику функции в любой точке этого интервала (рис. 8 а).
График функции называется вогнутым на интервале , если он расположен выше касательной, проведенной к графику функции в любой точке этого интервала (рис. 8 б).
Рис. 8 а Рис. 8 б
ТЕОРЕМА |
(достаточный признак выпуклости (вогнутости) графика функции)
Если
|
Точка кривой, отделяющая ее выпуклую дугу от вогнутой, называется точкой перегиба.
Точки кривой, в которых
вторая производная
или не существует, называются критическими
точками второго рода. Точки перегиба
следует искать среди критических точек
второго рода.
В критической точке
второго рода
перегиб будет только в том случае, когда
при переходе через эту точку
меняет знак.
Правило. Для определения точек перегиба кривой надо определить все критические точки второго рода и рассмотреть знаки в каждых двух соседних интервалах, на которые эти точки делят область определения функции. В случае, если знаки в двух соседних интервалах различны, критическая точка второго рода является точкой перегиба. Если же в двух соседних интервалах имеет один и тот же знак, то в рассматриваемой критической точке второго рода перегиба нет. В точке перегиба кривая пересекает касательную.
Пример.
Определить интервалы выпуклости и
вогнутости, точки перегиба графика
функции
.
Решение.
Область определения функции – интервал
.
Найдем первую и вторую производные функции
,
.
Так как
при любом значении
,
то кривая вогнута на всем интервале
.
Точек перегиба нет.
Пример.
Определить интервалы выпуклости и
вогнутости и точки перегиба графика
функции
.
Решение. Область определения функции – интервал .
Найдем первую и вторую производные функции
,
.
Решаем уравнение
и находим, что
.
Это единственная критическая точка.
Она делит область определения функции
на два интервала
и
.
– +
0
На интервале кривая выпукла , а на интервале – вогнута . Таким образом, при переходе через точку вторая производная меняет знак. Эта точка является точкой перегиба. Ее координаты .
3.3. Асимптоты
Определение. |
Если расстояние от
кривой
|
Различают асимптоты: вертикальные и наклонные.
Кривая имеет вертикальную асимптоту
, если при ,
или при
. Для определения вертикальных асимптот надо отыскать те значения аргумента, вблизи которых неограниченно возрастает по абсолютной величине. Если такими значениями аргумента являются
, то уравнения вертикальных асимптот будут
;
;
…
Вертикальные асимптоты
– это нули знаменателя функции. Например,
.
Здесь две вертикальные асимптоты:
,
Для определения наклонной асимптоты
кривой надо найти числа
и
по формулам
,
(иногда следует
отдельно рассматривать случаи
и
).