Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Uzbek_E.K__Suhova_YU.V._Ivahnenko_N.N._Visshaya...doc
Скачиваний:
9
Добавлен:
15.11.2019
Размер:
3.58 Mб
Скачать

7.5. Дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейным однородным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

где и – постоянные величины.

Для нахождения общего решения однородного уравнения составляется характеристическое уравнение

.

Структура общего решения однородного уравнения зависит от характера корней:

  • если корни вещественные, различные, т.е. , то общее решение уравнения имеет вид:

  • если корни вещественные, кратные, т.е. , то общее решение уравнения имеет вид:

  • если корни комплексные, т.е. , то общее решение уравнения имеет вид

Пример. Решить уравнение .

Решение. Ему соответствует характеристическое уравнение , корнями которого являются . Следовательно, общее решение однородного уравнения имеет вид

.

Пример. Решить уравнение .

Решение. Ему соответствует характеристическое уравнение . Найдем его корни:

.

Корни вещественные кратные, т.е. , Следовательно, общее решение уравнения имеет вид:

.

Пример. Решить уравнение .

Решение. Ему соответствует характеристическое уравнение . Найдем его корни:

.

Действительная часть , мнимая часть . Следовательно, общее решение однородного уравнения имеет вид

.

8. Числовые ряды

Рядом называется сумма бесконечного множества слагаемых

являющихся членами бесконечной последовательности.

Числа называются членами ряда.

Сумма первых членов ряда называется -ой частичной суммой.

.

Ряд называется сходящимся, если последовательность его частичных сумм при имеет конечный предел:

Этот предел называется суммой сходящегося ряда.

Если не существует или бесконечен, то ряд называется расходящимся.

Пример. Написать -ый член ряда по данным первым его членам.

  1. Ответ: .

  2. Ответ: .

  3. Ответ: .

8.1. Необходимый признак сходимости числового ряда

Если ряд сходится, то его общий член при , т.е.

.

! Этот общий признак не является достаточным, т.е. из того, что общий член стремиться к нулю при , нельзя сделать вывод о сходимости ряда. Но если общий член не стремится к нулю, то ряд расходится.

Пример. Исследовать на сходимость ряд

Решение. Проверим, выполняется ли необходимое условие сходимости ряда, а именно . В наше случае , тогда

.

Так как необходимое условие не выполняется, то этот ряд расходится.

Ряд, членами которого являются только положительные числа, называется знакоположительным.

8.2. Достаточные признаки сходимости знакоположительных рядов

Признак Даламбера.

Если для положительного ряда существует , то

  • при ряд сходится,

  • при ряд расходится,

  • при о сходимости ряда сказать ничего нельзя, т.е. надо применять другой признак.

Пример. Исследовать на сходимость ряд

Решение. Находим , .

– ряд сходится.

Интегральный

признак Коши.

Ряд с положительными членами сходится или расходится одновременно с несобственным интегралом

,

где – непрерывная, положительная, монотонная убывающая производящая функция.

Пример. Исследовать на сходимость гарнмонический ряд .

Решение. Вычислим

.

Гармонический ряд расходится.

Пример. Исследовать на сходимость ряд

Решение. Члены ряда можно рассматривать как значения функции при Члены ряда убывают: Вычислим

.

Несобственный интеграл сходится, значит сходится и данный ряд.

Радикальный

признак Коши.

Если для положительного ряда существует , то

  • при ряд сходится,

  • при ряд расходится,

  • при о сходимости ряда сказать ничего нельзя.

(Этот признак применяется лишь тогда, когда извлекается).

Пример. Исследовать на сходимость

Решение. Преобразуем выражение под знаком суммы.

Применяя радикальный признак Коши, имеем:

Таким образом, исходный ряд сходится.

Первый признак

сравнения.

Сравним ряд с положительными членами

с другим знакоположительным рядом

  • если ряд сходится и начиная с некоторого члена ряда выполняется неравенство , то ряд также сходится;

  • если ряд расходится и начиная с некоторого члена ряда выполняется неравенство , то и ряд также расходится.

Пример. Исследовать сходимость ряда

Решение. Сравним данный ряд с гармоническим рядом

Т.к. каждый член исходного ряда, начиная со второго, больше соответствующего члена гармонического ряда, а гармонический ряд является расходящимся (интегральный признак), то данный ряд тоже расходится.

Замечание. Обобщенный гармонический ряд при сходится, при расходится.

Второй признак

сравнения.

Даны два положительных ряда и . Если существует конечный предел отношения членов ряда при , отличный от нуля, то оба ряда сходятся, либо расходятся одновременно, т.е.

и .

Пример. Исследовать ряд на сходимость .

Решение. Сравним этот ряд со сходящимся рядом (он сходится по интегральному признаку). Проверим, существует конечный, отличный от нуля предел

.

Таким образом, ряд является сходящимся.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]