
- •Содержание
- •Введение
- •1Лабораторный практикум
- •1.1Получение математических моделей процессов резания методом полного факторного эксперимента
- •Статистическое планирование эксперимента. Выбор параметра оптимизации и независимых факторов. Построение матриц полного факторного эксперимента.
- •1.1.2 Получение математической модели
- •1.1.3 Проверка адекватности модели
- •1.1.4 Лабораторная работа №1
- •Содержание отчета
- •Контрольные вопросы
- •1.2 Получение математических зависимостей моделированием процессов износа изделий и материалов
- •1.2.1 Особенности моделирования процесса износа
- •1.2.2 Лабораторная работа №2 Исследование износостойкости различных материалов моделированием процесса износа
- •Содержание и порядок выполнения работы
- •Содержание отчета
- •Контрольные вопросы
- •1.2.3 Лабораторная работа №3
- •Оборудование, приборы, инструменты, заготовки
- •Содержание и порядок выполнения работы
- •Содержание отчета
- •Контрольные вопросы
- •1.3 Построение моделей в среде Excel for Windows
- •1.3.1 Построение линейной модели в Excel (пример)
- •1 Настройка пакета анализа
- •2 Ввод данных
- •3 Нахождение основных числовых характеристик
- •4 Нахождение коэффициента корреляции
- •5 Нахождение параметров линейной регрессии
- •6 Расчет доверительного интервала для прогноза
- •7 Построение доверительной области для прогноза
- •8 Расчет максимального % ошибки прогнозирования
- •9 Выводы по работе
- •1.3.2 Построение степенной модели в Excel (пример)
- •1 Настройка пакета анализа
- •2 Ввод данных
- •3 Нахождение основных числовых характеристик
- •4 Нахождение коэффициента корреляции
- •5 Нахождение параметров линейной регрессии
- •1.3.3. Пример построения многофакторной линейной модели в Excel
- •1 Настройка пакета анализа
- •2 Ввод данных
- •3 Нахождение основных числовых характеристик
- •4 Нахождение параметров линейной регрессии
- •5 Выводы по работе
- •1.3.4 Лабораторная работа № 4 Построение однофакторных регрессионных моделей в приложении
- •Содержание и порядок выполнения работы
- •Содержание отчета
- •Контрольные вопросы
- •1.3.5 Лабораторная работа № 5 Построение линейной многофакторной модели в приложении
- •2 Методические указания к практическим занятиям
- •2.1 Моделирование процесса резания методом линейного программирования Практическое занятие 1
- •2.1.2 Содержание отчёта
- •2.1.3 Контрольные вопросы
- •2.2 Исследование вероятностных эксплуатационных характеристик режущих инструментов Практическое занятие 2
- •2.2.1 Содержание и порядок выполнения работы
- •2.2.2 Содержание отчета
- •2.2.3 Контрольные вопросы
- •2.3 Определение закона распределения периода стойкости инструмента при малых объемах испытаний Практическое занятие 3
- •2.3.1 Содержание и порядок выполнения работы
- •2.3.2 Содержание отчета
- •2.4 Получение математических моделей методом полного факторного эксперимента Практическое занятие 4
- •2.4.1 Содержание и порядок выполнения работы
- •2.4.2 Содержание отчёта
- •2.4.3 Контрольные вопросы
- •2.5 Получение математических моделей методами теории корреляции Практическое занятие 5
- •2.5.1 Содержание и порядок выполнения работы
- •2.5.2 Содержание отчета
- •2.5.3 Контрольные вопросы
- •3.1 Задание на расчетно-графическую работу
- •3.2 Порядок выполнения работы
- •3.3 Проверка соответствия статистического распределения теоретическому по критерию Пирсона (æ²)
- •3.4 Проверка соответствия статистического распределения теоретическому по критерию Колмогорова (n)
- •Статистическое, 2- теоретическое;
- •Список рекомендованной литературы
- •Приложение а Справочные таблицы для проверки адекватности математических моделей
- •Приложение б Пример выполнения расчетно-графической работы
- •84313, М. Краматорськ, вул. Шкадінова, 72
2.5.1 Содержание и порядок выполнения работы
1 Рассчитывают коэффициент парной корреляции
, (2.46)
где - текущие значения ;
-
средние значения
;
-
текущие значения
;
-
средние значения
;
- количество исходных данных.
Если
для каждого значения
дано несколько значений
,
то рассчитывают среднее
для каждого
,а
затем среднее суммарное
.
Для удобства расчета результаты сводим в таблицу 2.13.
Таблица 2.13 – Исходные данные для расчета коэффициента корреляции
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
1 |
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
.. |
|
|
|
|
|
|
|
.. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Для
получения степенной корреляционной
зависимости используют
и
.
2 Значимость коэффициента корреляции проверяют по критерию Стьюдента
, (2.47)
где - расчетные значения критерия Стьюдента (по абсолютной величине);
. (2.48)
При
,
заданной вероятности
и числе степеней свободы
считают значимым. Табличные значения
приведены
в таблице А2 (Приложения А).
3 Корреляционное уравнение записывают в виде
, (2.49)
где
- коэффициенты корреляционного уравнения.
, (2.50)
где
.
(2.51)
Для
расчета
и
используют столбцы 4 и 7 таблицы 2.13.
4 Свободный член уравнения (2.49) рассчитывают по формуле
. (2.52)
Значения и записывают в уравнение 2.49. Для получения степенной зависимости результат потенцируют.
5 Для проверки точности прогнозирования по корреляционному уравнению строят в одной системе координат два графика: один – по исходным данным, второй – по результатам расчета по полученному уравнению при заданных значениях . Определяют максимальную ошибку прогнозирования
, (2.53)
где
- максимальная разность между исходными
и расчетными
значениями
.