
- •Назначение и свойства промывочной жидкости для бурения осложненных зон.
- •Часть 1. Теоретические основы структурирования промывочных жидкостей
- •Структура промывочных жидкостей
- •Гидрофобные (коагуляционные) структуры
- •Толщина диффузионного слоя с увеличением концентрации ионов и их заряда снижается в соответствии с уравнением
- •Гидрофильные структуры
- •1.2.1 Структура воды
- •1.2.2 Поверхностная энергия твердых тел.
- •Поверхностные натяжения твердых тел
- •1.2.3. Взаимодействие воды с поверхностью твердых тел.
- •2. Структура глинистого раствора.
- •2.1 Структурообразователи
- •2.2 Механизм гидрофильного структурообразования глинистых растворов
- •2.3. Объёмная электрическая энергия промывочной жидкости
- •Среднее значение
- •2.4. Приборы для определения прочности структуры промывочных жидкостей
- •3. Структурирование глинистых растворов
- •3.1. Способы структурирования
- •3.2. Структурирование промывочной жидкости за счет повышения концентрации дисперсной фазы
- •3.3. Структурирование буровых растворов путем диспергирования твердой фазы
- •Влияние числа импульсов генератора на свойства растворов
- •3.4. Влияние температуры на прочность структуры глинистых растворов
- •4. Роль электролитов в структурировании промывочных жидкостей.
- •4.1. Общие сведения об электролитах, применяемых при бурении скважин.
- •Зависимость рН растворов солей от их концентрации
- •Теплота растворения электролитов
- •4.2. Электролиты в роли структурообразователя
- •4.3. Активация твердой фазы электролитами.
- •4.4. Дезактивация дисперсной фазы электролитами
- •5. Роль полимеров в структурировании промывочных жидкостей.
- •5.1. Полимеры – структурообразователи.
- •5.1.2. Синтетические структурообразователи
- •5.2. Активность полимеров
- •Расчетные значения энергии поляризации
- •5.3. Другие функции полимеров.
- •5.4. Активация полимеров.
- •5.5. Активация дисперсионной среды полимерных растворов.
- •5.6. Активация твердой фазы полимерами
- •5.7. Дезактивация дисперсной фазы гидрофобными веществами (пав, полимерами, маслами)
- •5.8 Стабильность (седиментационная и агрегативная устойчивость) раствора.
- •5.9 Стабилизация буровых растворов полимерами.
- •Устойчивость реагентов к агрессии солей
- •6. Деструктурирование промывочных жидкостей
- •6.1. Искусственное деструктурирование (разжижение) промывочных жидкостей путем снижения концентрации твердой фазы
- •6.2. Деструктурирование промывочных жидкостей путём активации твёрдой фазы. Понизители вязкости.
- •6.3. Деструктурирование минерализованных промывочных жидкостей
- •7. Структурная вязкость и коэффициент трения промывочных жидкостей
- •7.1.Вязкость ньютоновских жидкостей
- •Силу трения можно выразить формулой
- •Тогда касательное напряжение составит
- •Коэффициент кинематической вязкости будет
- •7.2. Вязкость структурированных жидкостей
- •7.2.1. Анализ существующих теорий
- •7.2.2. Влияние скорости течения, диаметра труб и концентрации твердой фазы на вязкость и коэффициент трения структурированных жидкостей
- •Влияние вязкости полимерного раствора и скорости
- •Зависимость показания раствора от концентрации кельцана
- •7.2.3. Влияние активации и дезактивации твёрдой фазы на коэффициент трения (вязкость) структурированных жидкостей.
- •7.3. Деструктурирование промывочных жидкостей при циркуляции.
- •7.3.1. Влияние длительности циркуляции структурированной жидкости на её вязкость
- •7.3.2. Влияние температуры на вязкость промывочных жидкостей.
- •7.4. Определение вязкости (касательных напряжений) промывочных жидкостей.
- •Значения вязкости различных буровых растворов
- •7.5. Влияние прочности структуры и вязкости промывочных жидкостей на процесс бурения
- •7.6. Тиксотропия промывочных жидкостей
- •Выводы:
- •7.7.Плотность промывочной жидкости.
- •Плотность аэрированной жидкости определяется по формуле
- •Часть II. Стабилизация неустойчивых стенок скважин. Задачами второй части исследований являются:
- •8.Общие сведения о структуре горных пород.
- •8.1 Химические связи в минералах
- •8.2. Межмолекулярные связи в горных породах.
- •8.3 Поверхностная энергия горных пород.
- •8.4 Устойчивость горных пород стенок скважин.
- •9. Промывочные жидкости для бурения уплотненных глин.
- •9.1. Уплотненные глины
- •Значения коэффициента для различной плотности глины
- •9.2. Осложнения при бурении уплотненных глин.
- •9.2.1. Механизм увлажнения и набухания глин.
- •9.2.2. Фильтрация воды в горные породы.
- •9.2.3. Разупрочнение уплотненных глин.
- •9.2.4. Диспергирование и размывание глин.
- •9.2.5. Влияние гидравлического давления на увлажнение глины.
- •9.2.6. Влияние горного давления на увлажнение глины.
- •9.3. Промывочные жидкости, применяемые для профилактики осложнений в уплотненных глинах
- •9.4. Основные направления выбора промывочной жидкости для бурения глинистых пород
- •9.5. Анализ эффективности применяющихся глинистых растворов для бурения уплотненных глин.
- •9.6. Анализ эффективности полимерных и полимерглинистых растворов.
- •9.7. Анализ эффективности ингибирующих растворов
- •10. Промывочные жидкости для бурения неуплотненных глин
- •10.1. Глинистые неуплотненные породы. Осложнения при их бурении.
- •10.2. Анализ влияния электролитов на увлажнение и прочность неуплотненной глины.
- •Зависимость пластической прочности образца глины от влажности к2
- •10.3. Влияние полимеров и полимерсолевых растворов на увлажнение и прочность неуплотненных глин.
- •10.4. Полимерполисолевые промывочные жидкости, для бурения неуплотненных глин (общие понятия).
- •10.5. Исследование крепящих свойств полимерполисолевых растворов.
- •10.5.1. Теоретические рассуждения.
- •10.5.2. Экспериментальные исследования.
- •11. Промывочные жидкости для бурения микротрещиноватых глинистых пород.
- •11.1. Микротрещиноватые глинистые породы. Осложнения при бурении
- •11.2. Влияние технологических параметров бурения на раскрытие трещин
- •11.3. Влияние гидродинамического давления на раскрытие трещин
- •11.4. Промывочные жидкости. Механизм их действия. Анализ эффективности.
- •12. Промывочные жидкости для бурения трещиноватых горных пород.
- •12.1. Трещиноватые горные породы
- •12.2. Поглощение промывочной жидкости в трещиноватых породах
- •12.3. Мероприятия по предупреждению поглощения промывочных жидкостей
- •12.4. Анализ эффективности различных наполнителей для кольматации трещин
- •Закупоривающая способность глинистых паст
- •Определение закупоривающей способности вол
- •Закупоривающая способность вус
- •Зависимость объема тампонажной смеси от состава ее компонентов
- •12.5. Применение пен при бурении трещиноватых пород
- •13. Промывочные жидкости для бурения соленосных отложений
- •13.1. Осложнения при бурении соленосных отложений
- •13.2. Растворение хемогенных горных пород Растворение горных пород в промывочной жидкости характерно для галлоидов и сульфатов, в меньшей степени карбонатов.
- •Измерение массы и длины образцов соли при растворении в воде
- •13.3. Размывание хемогенных пород
- •Зависимость скорости и константы растворения соли от скорости потока
- •13.4. Анализ влияния различных компонентов промывочной жидкости на растворяющую способность раствора
- •Скорость растворения галита в перемешиваемом растворе, м/с10-7 (емкость 10л)
- •Из анализа результатов следует:
- •13.5. Промывочные жидкости, применяемые для бурения соленосных отложений
- •Промывочные жидкости, применяемые в России при бурении соленосных отложений
- •Продолжение таблицы 13.7
- •13.6. Анализ качества применяющихся промывочных жидкостей для бурения соленосных отложений
- •Скорость растворения галита в циркулирующих растворах
- •13.7. Силикатные растворы
- •Состав и свойства сульфатосиликатных и карбонатосиликатных растворов
- •13.8. Лигниноглинистые растворы
- •Заключение
- •Библиографический список
- •3. Структурирование глинистых растворов 42
- •4. Роль электролитов в структурировании промывочных жидкостей. 55
- •5. Роль полимеров в структурировании промывочных жидкостей. 78
- •6. Деструктурирование промывочных жидкостей 116
- •7. Структурная вязкость и коэффициент трения промывочных жидкостей 131
- •9. Промывочные жидкости для бурения 188
- •10. Промывочные жидкости для бурения неуплотненных глин 222
- •11. Промывочные жидкости для бурения микротрещиноватых глинистых пород. 264
- •12. Промывочные жидкости для бурения трещиноватых горных пород. 279
- •13. Промывочные жидкости для бурения соленосных отложений 304
Расчетные значения энергии поляризации
Функциональная группа |
Разность электроотри-цательной группы nЭ1–Э2 |
Энергия поляризации, кДж/моль |
ГЛБ (по Девису) |
|
(nЭ1-Э2)2 |
|
|||
–ОН |
1,4 |
2,0 |
1 |
0,5–1,9 |
–СООН |
4,9 |
24,0 |
12 |
12,4 |
–СООNa |
6,1 |
37,21 |
18,6 |
19,1 |
–СООК |
6,2 |
38,44 |
19,2 |
21,1 |
–SO3Na |
9,57 |
91,6 |
45,8 |
38,7 |
Катионы в таких случаях в виде слоя противоионов образуют экран понижающий активность твёрдой фазы. С целью повышения её активности (устранения экранирующего слоя водорода) в раствор добавляют щёлочь:
–SiO-
+
H+
+ OH-
–SiO-
+ H2O
–COO + H+ + OH- –COO + H2O
Активность частиц твёрдой фазы зависит не только от активности функциональных групп, но и их количества, степени замещения, степени полимеризации.
5.3. Другие функции полимеров.
Роль полимеров в буровом растворе не ограничивается только функцией структурообразователя. Они выполняют целый ряд других функций: роль разжижителя (при малой концентрации), ингибитора диспергирования и набухания глинистых пород, понизителя водоотдачи и фильтрации, стабилизатора, гидрофобизатора бурильной колонны и стенок скважин и т .д.
В буровых растворах они, кроме того, выполняют функцию флокулянта для удаления шлама грубодисперсной фазы из раствора.
Для выяснения причин, определяющих названные функции, для определения сути протекающих процессов в контакте полимерных растворов с глинистыми породами рассмотрим механизм их взаимодействия.
Известно, что полимеры представляют собой цепи, состоящие из большого числа звеньев (мономеров). Каждое звено может вращаться вокруг направлений, соединяющих их химические связи. Такое вращение Вант-Гофф назвал внутренним вращением в молекуле. Под воздействием полярной (заряженной) поверхности твердого тела полярные звенья поворачиваются в сторону полярного твердого тела, а неполярной (водородной) в обратную сторону.
В результате этого поверхность становится гидрофобной, а электрический потенциал равным нулю.
Рис.5.1.
Влияние ориентации молекул ПАВ на поверхности металла на электрический потенциал.
Способность ПАВ и полимеров к образованию ориентированных слоев на границе с твердым телом была установлена ленинградскими учеными П.И. Лукирским и А.В. Ечеистовой [14].
Они наносили на золотую пластинку различные количества полимера и измеряли потенциал пленки ∆φ. Полученные кривые зависимости ∆φ от γ (количества мультислоев) имели пилобразную форму с максимумами γ, Зγ, 5γ и минимумами (∆φ=0) при 2γ, 4γ (рис.6.1).
К.В. Блоджет [6] наблюдал эти явления на пластинках с отрицательным поверхностным зарядом (кварц, стекло). При подъеме стеклянной пластинки из воды через монослой полимера на ней образуется пленка, гидрофобная поверхность которой ориентирована наружу. Если затем погружать пластинку в обратном направлении в воду, на пластинке "спина к спине" откладывается второй слой с гидрофильной поверхностью и т.д.
При очень малых концентрациям ПАВ и полимеров в растворе в поверхностном (адсорбированном) слое соблюдается закон распределения Генри [6], и, вследствие гидрофобизации поверхности твердого тела, поверхностное напряжение снижается ,в соответствии с уравнением
σ =σ0–qс, (5.1)
где σ– поверхностное натяжение в растворе ПАВ, σо – начальное поверхностное натяжение твердого тела; q- поверхностная активность твердого тела; с – концентрация ПАВ.
С увеличением концентрации ПАВ поверхность тела постепенно заполняется молекулами ПАВ, и темп снижения поверхностного натяжения падает.
В этом-случае закон Генри перестает соблюдаться. При больших концентрациях ПАВ в растворе снижение поверхностного натяжения происходят в соответствии с уравнением Шишковского:
σ = σ0 – А∞RТ 1n(1 + КС), (5.2)
где А∞– масса адсорбированного на поверхности твердого тела вещества; R – газовая постоянная; Т – температура по Кельвину; К – константа, зависящая от концентрации ПАВ.
Р
ис.
5.2.
Изотермы абсорбции (А) и поверхностного натяжения для растворов ПАВ с повышением концентрации С.
В контакте полимерных растворов с поверхностью твердого тела может адсорбироваться различное количество мультислоев. При течении полимерного раствора скольжение жидкости происходит по плоскостям с неполярно ориентированными слоями, вследствие чего снижается трение и износ твердого тела.
Гидрофобизация бурильных труб снижает трение при вращении бурильной колонны, потери давления при циркуляции жидкости в бурильных трубах и в скважине.
На рис. 5.3 показана зависимость потерь давления растворов полимеров, циркулирующих в колонне бурильных труб диаметром 50,8 мм и длиной 30-50 мм
[12].
Из графика видно, что при малых концентрациях полимеров потери давления при циркуляции растворов в бурильных трубах снижаются, по сравнению с потерями давления при циркуляции чистой воды, в 2-3 раза. Однако надо помнить, что гидрофобизация труб возможна лишь при малых концентрациях полимеров в растворе. При больших концентрациях вязкость раствора возрастает, возрастают и потери давления.
Стенки скважины в уплотненных глинах можно рассматривать как плоское твердое тело. Макромолекулы полимеров вследствие незначительных размеров пор не способны проникать в глинистую породу и адсорбируются на поверхности стенок скважины так же, как и на пластины твердого тела. В зависимости от концентрации полимера в растворе на стенках скважин может адсорбироваться несколько мультислоев полимера.
Рис. 5.3.
Зависимость потерь давления в бурильных трубах от расхода различных растворов: 1 – вода. 2-0,17 % раствор ПАА. 3-0.17 % раствор ГПАА, 4 – 0,29% раствор КМЦ.
Но при циркуляции раствора неподвижными оказываются лишь один - два слоя, прочно связанных с поверхностью стенок скважин. Причем наружная поверхность наружного слоя всегда гидрофобна.