Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Возбудимые ткани.doc
Скачиваний:
14
Добавлен:
08.11.2019
Размер:
2.22 Mб
Скачать

2.1.6. Особенности проведения возбуждения в нервных волокнах

Большая скорость проведения возбужде­ния. Скорость проведения ПД в различных типах волокон нерва равна 0,5—120 м/с. Она значительно выше в миелиновых волокнах в связи с сальтаторным типом проведения ПД, а среди миелиновых волокон прямо пропорциональна диаметру волокна. Скорость проведения воз­буждения в миелиновых нервных волокнах значительно выше, чем в других удлиненных возбудимых структурах, — в гладких миоцитах (0,02—0,10 м/с), рабочих кардиомиоцитах (около 1 м/с), и только в миоцитах проводя­щей системы сердца и скелетных миоцитах скорость проведения ПД (2—5 м/с) достигает величин распространения ПД в низкоско­ростных нервных волокнах (тип С и В). Передача возбуждения по нервным волокнам является наиболее скоростным из известных способов передачи информации на значи­тельные расстояния в организме. Для сравне­ния отметим, что скорость передачи гумо­ральных влияний ограничена скоростью кровотока, которая равна от 0,5 мм/с в капилля­рах до 0,25 м/с в аорте (средняя скорость).

Малая утомляемость нервного волокна. При нормальном кровоснабжении (доставке кислорода и питательных веществ) проводя­щий возбуждение нерв практически неутом­ляемость. «Изумительно долгая неутомляемость нерва» впервые была показана Н.Е.Введен­ским (1883): в его опытах нерв сохранял спо­собность к проведению возбуждения в тече­ние 6—8 ч непрерывного раздражения не­сильными токами в условиях наличия кисло­рода в окружающей среде и поддержания влажного состояния нерва. Это обусловлено тем, что при проведении ПД по нервным во­локнам используется всего лишь одна милли­онная часть запасов трансмембранных ион­ных градиентов и, следовательно, нужны не­большие количества АТФ для восстановле­ния (например, посредством Nа/К-насоса) ионных градиентов. Об энергетической эко­номности проведения возбуждения свиде­тельствует и низкая величина теплопро­дукции в работающем нерве, отражающая степень окислительного фосфорилирования в митохондриях. Ее величина в нерве (0,06 кал/г ткани в течение 1 ч) примерно в 16 раз меньше, чем на соответствующую еди­ницу массы в целом организме в условиях ос­новного обмена, и в миллион раз меньше, чем в работающей мышце.

Высокая лабильность.

2.1.7. Аксонный транспорт

Наличие у нейрона отростков, длина которых может достигать 1 м (например, аксоны, иннервирующие мускулатуру конечностей), со­здает серьезную проблему внутриклеточной связи между различными участками нейрона и ликвидации возможных повреждений его отростков. Основная масса веществ (струк­турных белков, ферментов, полисахаридов, липидов и др.) образуется в трофическом центре (теле) нейрона, расположенном пре­имущественно около ядра, а используются они в различных участках нейрона, включая его отростки. Хотя в аксонных окончаниях существуют синтез медиаторов, АТФ и по­вторное использование мембраны пузырьков после выделения медиатора, все же необхо­дима постоянная доставка ферментов и фраг­ментов мембран из тела клетки. Для транс­порта этих веществ (например, белков) путем диффузии на расстояние, равное максималь­ной длине аксона (около 1 м), потребовалось бы 50 лет! Для решения этой задачи эволю­ция сформировала специальный вид транс­порта в пределах отростков нейрона, кото­рый более хорошо изучен в аксонах и полу­чил название аксонного транспорта. С помо­щью этого процесса осуществляется трофи­ческое влияние не только в пределах различ­ных участков нейрона, но и на иннервируемые клетки. В последнее время появились данные о существовании нейроплазматического транспорта в дендритах, который осу­ществляется из тела клетки со скоростью около 3 мм в сутки. Различают быстрый и медленный аксонный транспорт.

Быстрый аксонный транспорт идет в двух направлениях: от тела клетки до аксонных окончаний (антеградный транспорт, скорость 250—400 мм/сут) и в противоположном на­правлении (ретроградный транспорт, ско­рость 200—300 мм/сут). Посредством антеградного транспорта в аксонные окончания доставляются везикулы, образующиеся в ап­парате Гольджи и содержащие гликопротеины мембран, ферменты, медиаторы, липиды и другие вещества. Посредством ретроградного транспорта в тело нейрона переносятся вези­кулы, содержащие остатки разрушенных структур, фрагменты мембран, ацетилхолинэстераза, неидентифицированные «сигналь­ные вещества», регулирующие синтез белка в соме клетки. В патологических условиях по аксону к телу клетки могут транспортировать­ся вирусы полиомиелита, герпеса, бешенства и столбнячный экзотоксин. Многие вещества, доставленные путем ретроградного транспор­та, подвергаются разрушению в лизосомах.

Быстрый аксонный транспорт осущест­вляется с помощью специальных структур­ных элементов нейрона: микротрубочек и микрофиламентов, часть которых представ­ляет собой актиновые нити (актин составляет 10—15 % белков нейрона). Для транспорта необходима энергия АТФ. Разрушение мик­ротрубочек (например, колхицином) и мик­рофиламентов (цитохолазином В), снижение уровня АТФ в аксоне более чем в 2 раза и па­дение концентрации Са2+ блокируют аксон­ный транспорт.

Медленный аксонный транспорт осу­ществляется только в антеградном направле­нии и представляет собой передвижение всего столба аксоплазмы. Он выявляется в опытах со сдавлением (перевязкой) аксона. При этом происходит увеличение диаметра аксона проксимальнее перетяжки в результа­те «наплыва гиалоплазмы» и утончение аксо­на за местом сдавления. Скорость медленно­го транспорта равна 1 —2 мм/сут, что соответ­ствует скорости роста аксона в онтогенезе и при его регенерации после его повреждения. С помощью этого транспорта перемещаются образованные в эндоплазматической сети белки микротрубочек и микрофиламентов (тубулин, актин и др.), ферменты цитозоля, РНК, белки каналов, насосов и другие веще­ства. Медленный аксонный транспорт не нарушается при разрушении микротрубочек, но прекращается при отделении аксона от тела нейрона, что свидетельствует о разных меха­низмах быстрого и медленного аксонного транспорта.

Функциональная роль аксонного транс­порта.

− Антеградный и ретроградный транс­порт белков и других веществ необходимы для поддержания структуры и функции аксо­на и его пресинаптических окончаний, а так­же для таких процессов, как аксонный рост и образование синаптических контактов.

− Аксонный транспорт участвует в трофи­ческом влиянии нейрона на иннервируемую клетку, так как часть транспортируемых ве­ществ выделяется в синаптическую щель и действует на рецепторы постсинаптической мембраны и близлежащих участков мембра­ны иннервируемой клетки. Эти вещества участвуют в регуляции обмена веществ, про­цессов размножения и дифференцировки иннервируемых клеток, формируя их функцио­нальную специфику. Например, в опытах с перекрестной иннервацией быстрых и мед­ленных мышц показано, что свойства мышц меняются в зависимости от типа иннервирующего нейрона, его нейротрофического воз­действия. Передатчики трофических влияний нейрона до сих пор точно не определены, важное значение в этом плане придается полипептидам и нуклеиновым кислотам.

− Роль аксонного транспорта особенно ярко выявляется при повреждении нерва. Если нервное волокно на каком-либо участке прервано, его периферический отрезок, ли­шенный контакта с телом нейрона, подверга­ется разрушению, которое называется валлеровской дегенерацией. В течение 2—3 суток на­ступает распад нейрофибрилл, митохондрий, миелина и синаптических окончаний. Надо отметить, что распаду подвергается участок волокна, снабжение которого кислородом и питательными веществами с кровотоком не прекращается. Считают, что решающим ме­ханизмом дегенерации является прекраще­ние аксонного транспорта веществ от тела клетки до синаптических окончаний.

− Аксонный транспорт играет важную роль и при регенерации нервных волокон.