Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Возбудимые ткани.doc
Скачиваний:
14
Добавлен:
08.11.2019
Размер:
2.22 Mб
Скачать

1.1.3.3.Ионные каналы

Ионные каналы образованы белками, они весьма разнообразны по устройству и меха­низму их действия. Известно более 50 видов каналов, каждая нервная клетка имеет более 5 видов каналов. Состояние активации управ­ляемого ионного канала обычно длится око­ло 1 мс, иногда до 3 мс и значительно боль­ше, при этом через один канал может пройти 12—20 млн ионов.

Классификация ионных каналов прово­дится по нескольким признакам.

По возможности управления их функцией различают управляемые и неуправляе­мые каналы (каналы утечки ионов). Через неуправляемые каналы ионы перемещаются постоянно, но медленно, естественно, при наличии электрохимического градиента, как и в случае быстрого перемещения ионов по управляемым каналам. Управляемые каналы имеют ворота с механизмами их управления, поэтому ионы через них могут проходить только при открытых воротах.

По скорости движения ионов каналы могут быть быстрыми и медленными. Напри­мер, потенциал действия в скелетной мышце возникает в следствие активации быстрых Nа- и К-каналов. В развитии потенциала действия сердечной мышцы наряду с бы­стрыми каналами для Nа+ и К+ важную роль играют медленные каналы — кальциевые, ка­лиевые и натриевые.

В зависимости от стимула, активирую­щего или инактивирующего, управляемые ионные каналы различают несколько их видов:

а)потенциалчувствительные,

б)хемочувствительные,

в)механочувствительные,

г)кальцийчувствительные,

д) каналы, чувст­вительные ко вторым посредникам.

Послед­ние расположены во внутриклеточных мем­бранах, они изучены недостаточно, так же как и кальцийчувствительные каналы. При взаимодействии медиатора (лиганда) с рецепторами, расположенными на поверхности клеточной мембраны, может происходить от­крытие ворот хемочувствительных каналов, поэтому их называют также рецепторуправляемыми каналами. Л и г а н д — это биологи­чески активное вещество или фармакологи­ческий препарат, активирующий или блокирующий рецептор. Открытие хемочувстви­тельных каналов происходит в результате конформационных изменений рецепторного комплекса. Ворота потенциалзависимых ка­налов открываются и закрываются при изме­нении величины мембранного потенциала. Поэтому в конструкции их воротного механизма должны быть частицы, несущие элект­рический заряд. Механочувствительные ка­налы активируются и инактивируются сдав­ливанием и растяжением. Кальцийчувстви­тельные каналы активируются, как видно из названия, кальцием, причем Са2+ может ак­тивировать как собственные каналы, напри­мер Са-каналы саркоплазматического ретикулума, так и каналы других ионов, напри­мер каналы ионов К+. Мембраны возбудимых клеток (гладких и поперечнополосатых мышц, в том числе и сердечной мышцы, нервной системы) содержат потенциале-, хемо-, механо- и кальцийчувствительные ка­налы. Следует заметить, что кальций-чувствительные каналы — это один из примеров хемо­чувствительных каналов.

В зависимости от селективности разли­чают ионоселективные каналы, пропускаю­щие только один ион, и каналы, не обладаю­щие селективностью. Имеются Nа-, К-, Са-, С1- и Nа/Са-селективные каналы. Есть кана­лы, пропускающие несколько ионов, напри­мер Nа+, К+ и Са2+ в клетках миокарда, т.е. не обладающие селективностью. Наиболее высока степень селективности потенциал чувствительных (потенциалзависимых) каналов, несколько ниже она у хемочувствительных (рецепторзависимых) каналов. Например, при действии ацетилхолина на Н-холинорецептор постсинаптической мембраны в нерв­но-мышечном синапсе активируются ионные каналы, через которые проходят одновремен­но ионы Nа+, К+ и Са2+. Механочувствитель­ные каналы являются вообще неселективны­ми для одновалентных ионов и Са2+.

Один и тот же ион может иметь не­сколько видов каналов. Наиболее важными из них для формирования биопотенциалов являются следующие.

Каналы для К+:

а) неуправляемые каналы покоя (каналы утечки) через которые К+ постоянно выходит из клетки, что является глав­ным фактором в формировании мем­бранного потенциала(потенциала покоя);

б) потенциалчувствительные управляемые К-каналы;

в) К-каналы, активируемые Са2+;

г) каналы, активируемые и другими иона­ми и веществами, например ацетилхолином, что обеспечивает гиперполяризацию миоцитов сердца.

Каналы для Nа+ — управляемые быстрые и медленные и неуправляемые (каналы утечки ионов):

а) потенциалчувствительные быстрые Na-каналы — быстро активирующиеся при уменьшении мембранного потенциала, обеспечивают вход Nа+ в клетку во вре­мя ее возбуждения;

б) рецепторуправляемые Nа-каналы, активируемые ацетилхолином в нервно-мы­шечном синапсе, глутаматом — в си­напсах нейронов ЦНС;

в) медленные неуправляемые Nа-каналы—каналы утечки, через которые Nа+ постоянно диффундирует в клетку и пере носит с собой другие молекулы, напри­мер глюкозу, аминокислоты, молекулы-переносчики. Таким образом, Nа-каналы утечки обеспечивают вторичный транспорт веществ и участие Nа+ в фор­мировании мембранного потенциала.

Каналы для Са2+ весьма разнообразны и наиболее сложны: рецепторуправляемые и потенциалуправляемые, медленные и бы­стрые:

а) медленные кальциевые потенциалчувствительные каналы (новое название: L-типа), медленно активирующиеся при деполяризации клеточной мембра­ны, обусловливают медленный вход Са2+ в клетку и медленный кальциевый потенциал, например, у кардиомиоцитов. Имеются в исчерченных и гладких мышцах, в нейронах ЦНС;

б) быстрые кальциевые потенциалчувствительные каналы саркоплазматического ретикулума обеспечивают выход Са2+ в гиалоплазму и электромеханическое со­пряжение .

Каналы для хлора имеются в скелетных и сердечных миоцитах, эритроцитах, в неболь­шом количестве в нейронах и сконцентри­рованы в синапсах. Потенциалуправляемые С1-каналы имеются в кардиомиоцитах, ре­цепторуправляемые в синапсах ЦНС и ак­тивируются тормозными медиаторами ГАМК и глицином.

Структура ионных каналов и их функци­онирование. Каналы имеют устье и селектив­ный фильтр, а управляемые каналы — и во­ротный механизм; каналы заполнены жид­костью, их размеры 0,3—0,8 нм. Селектив­ность ионных каналов определяется их раз­мером и наличием в канале заряженных час­тиц. Эти частицы имеют заряд, противопо­ложный заряду иона, который они притяги­вают, что обеспечивает проход иона через данный канал (одноименные заряды, как из­вестно, отталкиваются). Через ионные кана­лы могут проходить и незаряженные частицы. Ионы, проходя через канал, должны из­бавиться от гидратной оболочки, иначе их размеры будут больше размеров канала. Диа­метр иона Nа+, например, с гидратной обо­лочкой равен 0,3 нм, а без гидратной оболоч­ки — 0,19 нм. Слишком мелкий ион, проходя через селективный фильтр, не может отдать гидратную оболочку, поэтому он не может пройти через канал. Однако, по-видимому, имеются и другие механизмы селективности клеточной мембраны. Гипотеза «просеива­ния» не в состоянии объяснить, например, почему К+ не проходит через открытые Nа-каналы в начале цикла возбуждения клет­ки, но тем не менее она дает удовлетвори­тельное, а в некоторых случаях и абсолютно убедительное объяснение избирательной (се­лективной) проницаемости клеточных мем­бран для разных частиц и ионов.

У каналов одного и того же вида возможно взаимовлияние друг на друга. Так, открытие одних электроуправляемых ка­налов способствует активации рядом распо­ложенных электрочувствительных каналов, в то время как открытие одного хемо- или механочувствительного канала и прохождение через него ионов практически не влияют на состояние соседних таких же каналов. Час­тичная деполяризация клеточной мембраны за счет активации механочувствительных ка­налов может привести к активации потенциалчувствительных каналов Nа+, К+ (или Cl-) и Са2+.

Ионные каналы блокируются специфи­ческими веществами и фармакологическими препаратами, что широко используется с ле­чебной целью. Специфическим блокатором механочувствительных каналов является Gadolinium (Gd3+). Блокаторами различных потенциалчувствительных каналов являются разные препараты или химические вещества. Так, например, блокатором хемочувствительного (рецепторчувствительного) канала эффекторных клеток, активируемого ацетилхо­лином, является атропин. Потенциалзависимые Nа-каналы блокируются тетродотоксином (действует только снаружи клетки); кальциевые — двухвалентными ионами, на­пример ионами никеля, марганца, а также верапамилом, нифедипином. Число ионных каналов на клеточной мембране огромно. Так, на 1 мкм2 насчитывают примерно 50 Nа-каналов, в среднем они располагаются на расстоянии 140 нм друг от друга. Успеш­ное изучение ионных каналов дает возмож­ность глубже понять механизм действия фар­макологических препаратов, а значит, более успешно применять их в клинической прак­тике. Новокаин, например, как местный анестетик снимает болевые ощущения пото­му, что он, блокируя Nа-каналы, прекращает проведение возбуждения по нервным волок­нам.

Затраты энергии при транспорте веществ через мембрану. На процессы транспорта веществ в организ­ме расходуется значительная часть энергии. Тем не менее транспорт веществ осуществля­ется весьма экономично, поскольку обычно транспорт одних частиц обеспечивает пере­ход других, о чем свидетельствуют многие факты.

В процессе работы Nа/К-насоса энергия расходуется на перенос Na+ из клетки в окружающую ее среду, тогда как перенос К+ в клетку происходит без непосредственной затраты энергии в результате конформации белковой молекулы (Nа/К-АТФазы) после присоединения К+ к активному ее участку.

Создание концентрационного градиента ионов, являясь причиной возникновения мембранного потенциала, одновременно формирует осмотический градиент, который в свою очередь создает предпосылки направленного перемещения воды. Созданный электрический градиент принимает участие в переносе заряженных частиц, обеспечивает возникновение потенциала действия и рас­пространение возбуждения.

Процесс перехода воды из одной облас­ти в другую, согласно закону осмоса, обеспе­чивает транспорт всех частиц, растворенных в ней и способных пройти через биологичес­кие фильтры (следование за растворителем). Энергия на переход воды непосредственно не затрачивается (вторичный транспорт), не затрачивается, естественно, энергия и на пере­нос частиц, растворенных в воде, которые следуют вместе с водой.

Натрийзависимый транспорт (транс­порт неэлектролитов) требует затрат энергии на перенос Nа+ из клетки, но при этом часто диффузия Nа+ в клетку обеспечивает переме­щение мембранных переносчиков, соединен­ных с молекулами глюкозы, аминокислот. Следовательно, глюкоза, аминокислоты могут поступать в клетку вместе с Nа+ (симпорт). Обратный захват медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС также осуществляется с помощью подобного механизма. Натрийзависимый транспорт может также обеспечивать челночные движения молекул-перенос­чиков, которые в свою очередь транспорти­руют ионы Са2+, Н+ из клетки (противотранспорт, антипорт) согласно концентрацион­ному градиенту переносчиков.

Глюкоза и аминокислоты переносятся с помощью облегченной диффузии вторично активно без непосредственной затраты энер­гии.

Диффузия газов в легких между возду­хом и кровью, а также в тканях между кро­вью и интерстицием происходит вообще без затрат энергии, как и обмен ионов НСO3 и Сl- между эритроцитами и плазмой, когда кровь находится в различных тканях организ­ма и легких. Диффузия веществ из кишечни­ка, например глюкозы в кровь после приема с пищей, если ее концентрация в кишечнике больше, происходит согласно градиенту кон­центрации, на создание которого клетки ор­ганизма энергию не затрачивают. Эти два случая (диффузия газов в легком, тканях и частиц — в кишечнике) являются исключе­нием, когда транспорт в организме осущест­вляется вообще без затраты энергии. Однако энергия расходуется на доставку этих ве­ществ в организм — дыхательные движения, приготовление пищи и обработка ее в пищеварительной системе.

Энергия, затрачиваемая сердцем на дви­жение крови по сосудам, обеспечивает не только транспорт кровью всех веществ, в том числе и газов, но и образование фильтрата (движение всех частиц) в тканях организма и мочеобразование.

Таким образом, первичный транспорт нескольких ионов, главным из которых является Nа+, обеспечивает перенос подавляющего большинства веществ в организме.

Все виды транспорта играют жизненно важную роль в процессе жизнедеятельности клеток и организма в целом. В частности, транспорт ионов обеспечивает формирова­ние мембранных потенциалов клеток мы­шечной и нервной тканей, одной из функций последней является регуляция различных систем организма.