
- •2.Моль, молярная масса, эквивалент, эквивалентная масса. Опред-ие эквив-тов и эквив-ных масс основных неорган-их соед-ий: оксидов, кислот, оснований, солей
- •3. Колич-ые законы химии. Закон эквив-тов
- •4. Основные понятия хим-ой термодин-ки: термодин-ая система, параметры состояния и ф-ии термодин-ой системы. 1-й закон термодин-ки. Энтальпия. Экзо- и эндотермические реакции
- •5. Законы термохимии. Закон Лавуазье-Лапласа. Закон Гесса. Следствие из закона Гесса
- •7. Изменение изобарно-изотерм-ого потенциала (энергии Гиббса). Расчёт энергии Гиббса для станд-ых условий. Уравнение Гиббса. Анализ ур-ия Гиббса
- •12. Каталит-ие процессы. Энергет-ие диаграммы каталитических процессов. Катализатор. Механизм действия катализатора
- •13. Стадии пром-ого катализа. Состав контактных (каталитических) масс (привести примеры). Изготовл-ие контактных масс
- •14. Технологические характеристики твёрдых катализаторов. Расчёт активности и температуры зажигания катализатора
- •15. Понятие о дисперсных системах и дисперсности. Классификация дисперсных систем
- •16. Классиф-ция растворов.Массовая доля, молярная, моляльная, эквив-ая конц-ии, мольная доля. Закон эквив-тов для растворов. Титр
- •17. Сольватная теория растворов. Термодинамика процесса растворения. Энергия сольватации
- •18. Коллигативные свойства растворов. Понижение температуры замерзания. Повышение температуры кипения. Закон Рауля
- •19. Произведение растворимости. Условия образования осадка
- •21. Механизм диссоциации солей и кислот. Ступенчатая диссоциация
- •22. Сильные электролиты. Активность иона. Коэф-т активности. Ионная сила раствора
- •23. Слабые электролиты. Константы диссоциации слабых электролитов. Степень диссоциации. Закон Освальда
- •24. Вода как слабый электролит. Ионное произведение воды. РН, рОн. Индикаторы
- •25. Сущность гидролиза солей. Гидролиз солей, образованных слаб основанием и слаб. Кислотой, слаб. Основанием и сил. Кислотой.
- •27. Константа гидролиза. Степень гидролиза. Факторы влияющие на степень гидролиза солей.
- •28. Строении и типы хим. Связи комплексных соед-ий. Основные положения кординационной теории Вернера.
- •35. Практическое применение электрохимических процессов в науке, технике, современном производстве
- •36. Сущность коррозионных процессов металлов и сплавов. Классификация процессов коррозии металлов
- •Уравнение атмосферной коррозии:
- •39. Основные методы защиты металлов от коррозии. Применение ингибиторов. Рац-ное конструирование. Легирование металлов. Электрохим-ая и протекторная защита металлов от коррозии
- •I. Изменение состава и свойств коррозионной среды
- •II. Применение защитных покрытий
- •1) Металлические покрытия
- •2) Неметаллические (лакокрасочные) покрытия
- •III. Создание сплавов устойчивых от коррозии – легирование
- •IV.Электронная защита
- •V. Защита от коррозии блуждающими токами
- •40. Защита металлов от коррозии путём нанесения анодных и катодных металл-их покрытий. Ур-ия анодных и катодных процессов в нейтр-ой и кислой среде. Способы получения металл-их покрытий
- •41. Защита металлов от коррозии путём нанесения лакокрасочных покрытий (лкп). Требования к лкп. Факторы, влияющие на срок службы лкп. Совр-ые лкп. Их св-ва и особен-ти
- •Свойства лакокрасочных покрытий
- •Факторы:1.Подготовка поверхности под покраску,2.Методы нанесения и отверждения лкп.3.Толщина комплексного лкп. Виды лакокрасочных материалов (лкм):
- •42. Сущность электролизных процессов. Схема электролизной установки. Заряды анода и катода. Анодные и катодные процессы
- •43. Электролиз рас-ов электро-та. Вода как активный реагент. Катодные процессы. Последов-ть разрядки ионов на катоде. Три группы катионов(примеры , ур-я р-й)
- •45. Сущность электролизных процессов. Электролиз расплавов электролитов (привести примеры, составить уравнения реакций). Законы электролиза. Постоянная Фарадея
- •46. Практическое применение электролизных процессов в современной промышленности
- •53. Периодические свойства элементов. Энергия ионизации. Сродство к электрону. Радиус атома
- •54. Химическая связь. Ковалентная, иная и металлическая связь. Водородная связь
- •57. Химические свойства воды
- •Методы умягчения воды
- •59. Природные соед-я кремния. Применение соед-й кремния в совр. Строит-ве
- •60. Физико-химические основы коррозии бетона. Классификация кор-х процессов(1,2,3 вида по Москвину)
- •63.Классификация полимеров
- •64. Сущность полимеризации. Схема процесса полимеризации, способы ее проведения
- •66. Сущность поликонденсации. Схема процесса поликонденсации и способы её проведения
- •67. Важнейшие полимеры, получаемые методом поликонденсации. Их основные свойства. Применение в строительстве
- •68. Пластические массы. Их классификация и состав. Пластические массы строительстве. Полимерная химия в Беларуси
- •69.Основные методы утилизации отходов полимеров.Рециклинг,захоронение,сжигание,пиролиз.
Какую работу нужно написать?
12. Каталит-ие процессы. Энергет-ие диаграммы каталитических процессов. Катализатор. Механизм действия катализатора
Явление увеличения скорости реакции при добавлении в систему веществ, которые по окончании реакции остаются хим-ки неизменными получила название катализ, а вещество называется катализаторами. Различают гомогенные и гетерогенные катализы.
A -> B (медленно) A+K -> AK -> B+K (быстро)
Механизм действия катализаторов состоит в понижении энергии активации, образовании промежуточных продуктов.
Катализатор — химическое вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции. Количество катализатора, в отличие от других реагентов, после реакции не изменяется. Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный – образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества (Химическая энциклопедия). Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.
Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al2O3, TiO2, ThO2, алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO,
Рис. 2.8 Энергетическая диаграмма химической реакции без катализатора (1) и в присутствии катализатора (2).
13. Стадии пром-ого катализа. Состав контактных (каталитических) масс (привести примеры). Изготовл-ие контактных масс
Промышленный катализ обычно осуществляют на пористом материале, так как это позволяет значительно увеличить площадь активной поверхности на единицу реакционного объема. Промышленный катализ ведут, как правило, на пористых зернах ( гранулах), что значительно увеличивает активную поверхность контакта. Промышленный катализ тоже не обходится без соединений ртути. В присутствии катализаторов - солей двухвалентной ртути - он реагирует с водяным паром и превращается в уксусный альдегид. Промышленные катализаторы должны удовлетворять ряду требований, предъявляемых технологией. Катализаторы должны быть активными к данной реакции, возможно более стойкими к действию контактных ядов, сравнительно дешевыми, обладать высокой механической прочностью, термостойкостью, определенной теплопроводностью и т.п. Поэтому применяемые на практике катализаторы редко являются индивидуальными веществами и, как правило, представляют собой сложные механические смеси, называемые контактными массами. В состав контактной массы входят в основном три составные части: собственно катализатор, активаторы и носители.
Прокаливание катализатора - одна из важных операций при изготовлении контактных масс. При прокаливании, вследствие термической диссоциации, получается собственно активное вещество катализатора. Гранулирование на тарельчатом грануляторе используют главным образом при изготовлении контактных масс механическим смешением компонентов.