
- •2.Моль, молярная масса, эквивалент, эквивалентная масса. Опред-ие эквив-тов и эквив-ных масс основных неорган-их соед-ий: оксидов, кислот, оснований, солей
- •3. Колич-ые законы химии. Закон эквив-тов
- •4. Основные понятия хим-ой термодин-ки: термодин-ая система, параметры состояния и ф-ии термодин-ой системы. 1-й закон термодин-ки. Энтальпия. Экзо- и эндотермические реакции
- •5. Законы термохимии. Закон Лавуазье-Лапласа. Закон Гесса. Следствие из закона Гесса
- •7. Изменение изобарно-изотерм-ого потенциала (энергии Гиббса). Расчёт энергии Гиббса для станд-ых условий. Уравнение Гиббса. Анализ ур-ия Гиббса
- •12. Каталит-ие процессы. Энергет-ие диаграммы каталитических процессов. Катализатор. Механизм действия катализатора
- •13. Стадии пром-ого катализа. Состав контактных (каталитических) масс (привести примеры). Изготовл-ие контактных масс
- •14. Технологические характеристики твёрдых катализаторов. Расчёт активности и температуры зажигания катализатора
- •15. Понятие о дисперсных системах и дисперсности. Классификация дисперсных систем
- •16. Классиф-ция растворов.Массовая доля, молярная, моляльная, эквив-ая конц-ии, мольная доля. Закон эквив-тов для растворов. Титр
- •17. Сольватная теория растворов. Термодинамика процесса растворения. Энергия сольватации
- •18. Коллигативные свойства растворов. Понижение температуры замерзания. Повышение температуры кипения. Закон Рауля
- •19. Произведение растворимости. Условия образования осадка
- •21. Механизм диссоциации солей и кислот. Ступенчатая диссоциация
- •22. Сильные электролиты. Активность иона. Коэф-т активности. Ионная сила раствора
- •23. Слабые электролиты. Константы диссоциации слабых электролитов. Степень диссоциации. Закон Освальда
- •24. Вода как слабый электролит. Ионное произведение воды. РН, рОн. Индикаторы
- •25. Сущность гидролиза солей. Гидролиз солей, образованных слаб основанием и слаб. Кислотой, слаб. Основанием и сил. Кислотой.
- •27. Константа гидролиза. Степень гидролиза. Факторы влияющие на степень гидролиза солей.
- •28. Строении и типы хим. Связи комплексных соед-ий. Основные положения кординационной теории Вернера.
- •35. Практическое применение электрохимических процессов в науке, технике, современном производстве
- •36. Сущность коррозионных процессов металлов и сплавов. Классификация процессов коррозии металлов
- •Уравнение атмосферной коррозии:
- •39. Основные методы защиты металлов от коррозии. Применение ингибиторов. Рац-ное конструирование. Легирование металлов. Электрохим-ая и протекторная защита металлов от коррозии
- •I. Изменение состава и свойств коррозионной среды
- •II. Применение защитных покрытий
- •1) Металлические покрытия
- •2) Неметаллические (лакокрасочные) покрытия
- •III. Создание сплавов устойчивых от коррозии – легирование
- •IV.Электронная защита
- •V. Защита от коррозии блуждающими токами
- •40. Защита металлов от коррозии путём нанесения анодных и катодных металл-их покрытий. Ур-ия анодных и катодных процессов в нейтр-ой и кислой среде. Способы получения металл-их покрытий
- •41. Защита металлов от коррозии путём нанесения лакокрасочных покрытий (лкп). Требования к лкп. Факторы, влияющие на срок службы лкп. Совр-ые лкп. Их св-ва и особен-ти
- •Свойства лакокрасочных покрытий
- •Факторы:1.Подготовка поверхности под покраску,2.Методы нанесения и отверждения лкп.3.Толщина комплексного лкп. Виды лакокрасочных материалов (лкм):
- •42. Сущность электролизных процессов. Схема электролизной установки. Заряды анода и катода. Анодные и катодные процессы
- •43. Электролиз рас-ов электро-та. Вода как активный реагент. Катодные процессы. Последов-ть разрядки ионов на катоде. Три группы катионов(примеры , ур-я р-й)
- •45. Сущность электролизных процессов. Электролиз расплавов электролитов (привести примеры, составить уравнения реакций). Законы электролиза. Постоянная Фарадея
- •46. Практическое применение электролизных процессов в современной промышленности
- •53. Периодические свойства элементов. Энергия ионизации. Сродство к электрону. Радиус атома
- •54. Химическая связь. Ковалентная, иная и металлическая связь. Водородная связь
- •57. Химические свойства воды
- •Методы умягчения воды
- •59. Природные соед-я кремния. Применение соед-й кремния в совр. Строит-ве
- •60. Физико-химические основы коррозии бетона. Классификация кор-х процессов(1,2,3 вида по Москвину)
- •63.Классификация полимеров
- •64. Сущность полимеризации. Схема процесса полимеризации, способы ее проведения
- •66. Сущность поликонденсации. Схема процесса поликонденсации и способы её проведения
- •67. Важнейшие полимеры, получаемые методом поликонденсации. Их основные свойства. Применение в строительстве
- •68. Пластические массы. Их классификация и состав. Пластические массы строительстве. Полимерная химия в Беларуси
- •69.Основные методы утилизации отходов полимеров.Рециклинг,захоронение,сжигание,пиролиз.
54. Химическая связь. Ковалентная, иная и металлическая связь. Водородная связь
Ионная. Электростатическое взаимодействие отрицательно и положительно заряженных ионов в химическом соединении. Возникает в случае большой разности электроотрицательности атомов. Не обладает направленностью и насыщенностью.
Ковалентная. Связь образованная за счет обобществленной пары электронов, поставляемых по одному от каждого атома. Обладает направленностью и насыщенностью. Если связь образована двумя одинаковыми атомами, то она неполярная. Если один из атомов притягивает электроны сильнее другого, то связь полярная. Мерой полярности служит электрический момент диполя св [кл/м, D дебай = 3.3*10-3 кл/м] равный произведению эффективного заряда на длину диполя lд св=lд
Растёт с увеличением ЭО.
Металлическая.
Водородная. Химическая связь образованная положительно поляризованным водородом молекулы A-H и отрицательным атомом B другой или той-же молекулы.
56. Кальций широко распространен, в земной коре его содержится примерно 3% по массе. В природе встречается в связанном состоянии, важнейшие соединения - карбонат кальция CaCO3 (мел, известняк, мрамор), гипс CaSO4*2H2O, силикаты. Кальций - это твердый металл белого цвета, проявляет степень окисления +2. Свободный кальций химически активен. При нагревании легко окисляется кислородом воздуха с образованием оксида: 2Ca + O2 = 2CaO Кальций взаимодействует со всеми неметаллами. С галогенами реакция идет уже на холоде (с иодом только в присутствии влаги): Ca+ Cl2 = CaCl2 При нагревании кальций реагирует с серой, фосфором, углеродом, азотом. Карбид кальция является ацетиленидом и при взаимодействии с водой разлагается с выделением ацетилена: CaC2 + 2H2O = C2H2 + Ca (OH)2 Соединяется с водородом, образуя солеобразный гидрид CaH2. С холодной водой реагирует довольно медленно, быстрее при нагревании: Ca + 2H2O = Ca (OH)2 + H2 Кальций бурно реагирует с разбавленными кислотами с образованием солей: Ca + 2HCl = CaCl2 + H2 Получают кальций электролизом расплава хлорида кальция либо методом алюмотермии: 3CaO + 2Al = Al2O3 + 3Ca Соединения кальция используются очень широко: в строительном деле, производстве удобрений, химической промышленности. Оксид кальция CaO - белое тугоплавкое вещество, называется негашеной или жженой известью. Оксид кальция бурно реагирует с водой, образуя гидроксид кальция Ca (OH)2, также называемый гашеной известью. Гидроксид кальция - сильное основание, плохо растворимое в воде. Насыщенный водный раствор гидроксида кальция - известковая вода - жадно поглощает углекислый газ: Ca (OH)2 + CO2 = CaCO3 + H2O От содержания в воде ионов Ca2+ и Mg2+ зависит жесткость воды. Если концентрация этих ионов велика, вода называется жесткой, если мала - мягкой. Существует карбонатная ( иначе временная), и некарбонатная ( иначе постоянная) жесткость. Временная жесткость обусловлена присутствием в воде гидрокарбонатов, а постоянная - солей кальция и магния других кислот (хлоридов, сульфатов). При кипячении воды гидрокарбонаты разлагаются, причем выпадает осадок карбоната кальция: Ca (HCO3)2 = CaCO3Ї + CO2 + H2O Добавление гидроксида кальция убирает карбонатную жесткость воды, при этом выпадает осадок карбоната: Ca (HCO3)2 + Ca (ОН) 2 = 2СаСО3Ї + 2H2O