
- •Ответы на вопросы.
- •1 Способ непосредственного подсчета вероятностей событий.
- •2 Статистический способ определения вероятностей событий.
- •3 Геометрический способ определения вероятностей событий.
- •4 Теорема сложения вероятностей для совместимых событий.
- •5 Теорема сложения вероятностей для несовместимых событий.
- •6 Зависимые и независимые события. Условные вероятности событий.
- •7 Теорема умножения вероятностей.
- •8 Формула полной вероятности.
- •9 Теорема гипотез (Формулы Бейеса).
- •10 Повторение испытаний. Формулы Бернулли.
- •11 Понятие случайной величины. Виды законов распределения.
- •12 Функция распределения случайной величины и ее свойства.
- •13 Плотность распределения случайной величины и ее свойства.
- •14 Вероятность попадания случайной величины на заданный участок.
- •15 Математическое ожидание случайной величины и ее свойства.
- •16 Дисперсия случайной величины и ее свойства. Среднее квадратичное отклонение.
- •17 Закон равномерной плотности.
- •18 Нормальный закон распределения.
- •19 Экспоненциальный закон распределения.
- •20 Вероятность попадания случайной величины на заданный участок.
- •21 Теорема Чебышева.
- •22 Теорема Бернулли.
- •23 Элементы математической статистики. Генеральная и выборочная совокупности. Статистическое распределение выборки.
- •24 Эмпирическая функция распределения, ее построение по опытным данным.
- •25 Гистограмма частот и относительных частот.
- •26 Статистические оценки параметров распределения. Несмещенные, эффективные и состоятельные оценки.
- •27 Интервальные оценки параметров распределения. Доверительный интервал.
- •28 Интервальная оценка математического ожидания нормального распределения при известном среднем квадратичном отклонении.
- •29 Интервальная оценка среднеквадратического отклонения нормального распределения.
- •30 Функция распределения системы случайных величин и ее свойства.
- •31 Плотность распределения системы случайных величин и ее свойства.
- •32 Законы распределения отдельных случайных величин, входящих в систему.
- •33 Условные законы распределения случайных величин.
- •34 Числовые характеристики системы двух дискретных случайных величин.
- •35 Числовые характеристики системы двух непрерывных случайных величин.
- •36 Условное математическое ожидание. Уравнение линии регрессии.
- •37 Корреляционный момент. Коэффициент корреляции.
- •38 Теорема сложения математических ожиданий.
- •39 Теорема сложения дисперсий.
- •40 Математическое ожидание линейной функции случайных аргументов.
- •44 Закон распределения суммы двух случайных величин.
- •45 Композиция одномерных нормальных законов.
- •46 Понятие о центральной предельной теореме.
- •47 Понятие о случайной функции.
- •48 Закон распределения случайной функции.
- •49 Математическое ожидание и дисперсия случайной функции.
- •50 Корреляционная функция случайного процесса и ее свойства. Нормированная корреляционная функция.
- •51 Определение характеристик случайной функции по опытным данным.
- •52 Сложение случайных функций.
- •53 Сложение случайной функции со случайной величиной.
- •54 Умножение случайной функции на неслучайную функцию.
- •55 Стационарная случайная функция и свойства ее характеристик.
28 Интервальная оценка математического ожидания нормального распределения при известном среднем квадратичном отклонении.
Задача построения доверительного интервала для оценки математического ожидания нормального распределения при известном среднем квадратичном отклонении сводится к следующему.
Обозначим неизвестное математическое ожидание через a, оценку же для него - .
Для нормального распределения
;
;
.
Найдем доверительный интервал, покрывающий неизвестный параметр a с надежностью , т.е. найдем такое , чтобы выполнялось равенство
.
(5.6)
Для этого воспользуемся формулой
,
где Ф(x)
– интеграл вероятности.
Заменив в ней X на и на , получим
,
где
.
На основании равенства (5.6) можем записать, что
,
отсюда
.
Число t
определяется по таблице значений функции
Лапласа. Затем из соотношения
находится оценка
.
С учетом этого доверительный интервал
будет
.
(5.7)
Пример. Случайная
величина X
имеет нормальное распределение с
известным средним квадратичным
отклонением
.
Построить доверительный интервал для
неизвестного математического ожидания
соответствующий доверительной вероятности
,
если объем выборки n=25.
Решение.
Найдем t из соотношения . По таблице значений функции Лапласа находим t, соответствующее значению Ф(t)=0.95/2=0.475. Оно будет t=1.96.
Определяем точность оценки
.
Следовательно, доверительный интервал будет
.
Полученный результат говорит о том, что этот доверительный интервал покрывает неизвестное математическое ожидание a с вероятностью 0,95.
29 Интервальная оценка среднеквадратического отклонения нормального распределения.
Задача построения доверительного интервала для оценки среднего квадратичного отклонения нормального распределения, покрывающего параметр с заданной надежностью по исправленному среднему квадратичному отклонению s.
Решение задачи сводится к нахождению такого числа , чтобы выполнялось равенство
или
.
Для того чтобы можно
было пользоваться готовой таблицей,
преобразуем двойное неравенство
в равносильное неравенство
.
Обозначив
,
получим
.
(5.8)
Таким образом, задача построения искомого доверительного интервала свелась к нахождению величины q.
Не вдаваясь в детали, отметим, что для этой цели вводится случайная величина X, равная
,
дифференциальная функция которой имеет вид
.
Для нахождения доверительной вероятности используется формула
,
где
.
Из равенства (5.8) по
заданному n
и
находится значение
.
Функция табулирована.
Следовательно, для построения искомого доверительного интервала достаточно по таблице найти соответствующее значение функции , а затем в двойное неравенство подставить значения s и q.
Пример. Построить доверительный интервал, покрывающий генеральное среднее квадратичное отклонение с надежностью , если по выборке объема n найдено исправленное среднее квадратичное отклонение s:
а)
б)
.
Решение.
По таблице значений функции находим:
а)
;
искомый доверительный интервал будет
;
или
.
б)
;
искомый интервал будет
или
.
Так как среднее
квадратичное отклонение
всегда
положительно, то окончательно получим,
что
.