
- •Ответы на вопросы.
- •1 Способ непосредственного подсчета вероятностей событий.
- •2 Статистический способ определения вероятностей событий.
- •3 Геометрический способ определения вероятностей событий.
- •4 Теорема сложения вероятностей для совместимых событий.
- •5 Теорема сложения вероятностей для несовместимых событий.
- •6 Зависимые и независимые события. Условные вероятности событий.
- •7 Теорема умножения вероятностей.
- •8 Формула полной вероятности.
- •9 Теорема гипотез (Формулы Бейеса).
- •10 Повторение испытаний. Формулы Бернулли.
- •11 Понятие случайной величины. Виды законов распределения.
- •12 Функция распределения случайной величины и ее свойства.
- •13 Плотность распределения случайной величины и ее свойства.
- •14 Вероятность попадания случайной величины на заданный участок.
- •15 Математическое ожидание случайной величины и ее свойства.
- •16 Дисперсия случайной величины и ее свойства. Среднее квадратичное отклонение.
- •17 Закон равномерной плотности.
- •18 Нормальный закон распределения.
- •19 Экспоненциальный закон распределения.
- •20 Вероятность попадания случайной величины на заданный участок.
- •21 Теорема Чебышева.
- •22 Теорема Бернулли.
- •23 Элементы математической статистики. Генеральная и выборочная совокупности. Статистическое распределение выборки.
- •24 Эмпирическая функция распределения, ее построение по опытным данным.
- •25 Гистограмма частот и относительных частот.
- •26 Статистические оценки параметров распределения. Несмещенные, эффективные и состоятельные оценки.
- •27 Интервальные оценки параметров распределения. Доверительный интервал.
- •28 Интервальная оценка математического ожидания нормального распределения при известном среднем квадратичном отклонении.
- •29 Интервальная оценка среднеквадратического отклонения нормального распределения.
- •30 Функция распределения системы случайных величин и ее свойства.
- •31 Плотность распределения системы случайных величин и ее свойства.
- •32 Законы распределения отдельных случайных величин, входящих в систему.
- •33 Условные законы распределения случайных величин.
- •34 Числовые характеристики системы двух дискретных случайных величин.
- •35 Числовые характеристики системы двух непрерывных случайных величин.
- •36 Условное математическое ожидание. Уравнение линии регрессии.
- •37 Корреляционный момент. Коэффициент корреляции.
- •38 Теорема сложения математических ожиданий.
- •39 Теорема сложения дисперсий.
- •40 Математическое ожидание линейной функции случайных аргументов.
- •44 Закон распределения суммы двух случайных величин.
- •45 Композиция одномерных нормальных законов.
- •46 Понятие о центральной предельной теореме.
- •47 Понятие о случайной функции.
- •48 Закон распределения случайной функции.
- •49 Математическое ожидание и дисперсия случайной функции.
- •50 Корреляционная функция случайного процесса и ее свойства. Нормированная корреляционная функция.
- •51 Определение характеристик случайной функции по опытным данным.
- •52 Сложение случайных функций.
- •53 Сложение случайной функции со случайной величиной.
- •54 Умножение случайной функции на неслучайную функцию.
- •55 Стационарная случайная функция и свойства ее характеристик.
26 Статистические оценки параметров распределения. Несмещенные, эффективные и состоятельные оценки.
В ряде практических случаев ограничиваются нахождением приближенных значений неизвестных параметров распределения случайной величины по опытным данным, т.е. статистических оценок таких числовых характеристик как математическое ожидание, дисперсия и среднее квадратичное отклонение.
Под оценкой параметра
обычно понимают величину, принимаемую
за неизвестный параметр a.
Требования к оценке параметров. Для того, чтобы оценка параметра имела практическую ценность, она должна (по возможности) обладать свойствами: несмещенности, эффективности и состоятельности.
Оценка называется несмещенной, если ее математическое ожидание равно истинному значению параметра, т.е.
.
Исключение смещенности
оценки гарантирует отсутствие
систематических ошибок при оценке
истинного значения параметра a.
Если
,
то оценка
называется смещенной, что приводит к
систематическим ошибкам в оценке
параметра a.
Несмещенная оценка называется эффективной, если она имеет наименьшее рассеяние среди всех несмещенных оценок параметра a по результатам измерения, т.е.
.
Эффективность оценки означает стремление дисперсии к нулю при неограниченном возрастании объема выборки.
Оценка называется состоятельной, если при неограниченном увеличении числа измерений n она стремится по вероятности к значению a, т.е.
.
Оценка истинного значения параметра a при равноточных измерениях является несмещенной и состоятельной. Если при этом случайные ошибки измерения подчиняются нормальному закону распределения вероятностей, то эта оценка будет и эффективной.
В качестве оценки для математического ожидания применяют среднее арифметическое значений выборки, т.е.
.
(5.3)
Эта оценка является
несмещенной и состоятельной. Проверка
требования эффективности оценки
параметра значительно сложнее. Однако
если случайная величина распределена
по нормальному закону, то оценка
математического ожидания m
является также эффективной оценкой и
имеет минимальную дисперсию
.
Для других же законов распределения эта оценка может и не быть эффективной.
За оценку для дисперсии принимают среднее арифметическое квадратов центрированных значений выборки:
.
(5.4)
Эта оценка является состоятельной, но смещенной оценкой дисперсии. Оценка же дисперсии, называемая исправленной дисперсией
,
(5.5)
является состоятельной, несмещенной, но и неэффективной. Исправленная дисперсия отличается от статистической дисперсии D*(x) лишь постоянным множителем n/(n-1).
Для нормально распределенных случайных величин эта оценка лишь «асимптотически эффективна», т.е. при неограниченном увеличении числа испытаний n она приближается к минимальному значению.
При достаточно
больших значениях n
смещенная статистическая дисперсия
D*(x)
и исправленная дисперсия
будут различаться незначительно, поэтому
в качестве оценки для дисперсии можно
применять любую из них.