Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы по Теории Вероятности.doc
Скачиваний:
72
Добавлен:
27.09.2019
Размер:
1.64 Mб
Скачать

22 Теорема Бернулли.

При достаточно большом числе независимых опытов n частота события A сходится по вероятности к вероятности этого события, т.е.

, (5.2)

где - частота события A;

p – вероятность появления события A;

, - сколь угодно малые положительные числа.

Пусть производится n независимых опытов, в каждом из которых событие A может произойти с вероятностью p. В результате этих опытов можно сформировать ряд, состоящий из случайных величин - чисел появлений интересующего нас события в каждом из n опытов:

.

Поскольку частота события A представляет собой среднее арифметическое случайных величин и равно

, то математическое ожидание частоты события можно определить как

.

Считая математические ожидания случайных величин одинаковыми и равными , математическое ожидание частоты события будет равно

.

Что и следовало доказать.

Пользуясь теоремой Бернулли в виде формулы (5.2) можно определить:

вероятность того, что при n испытаниях отклонение частоты события от вероятности не превзойдет величину ;

число испытаний n, необходимое для того, чтобы отклонение вероятности от частоты события не превышало при заданной вероятности P;

отклонение частоты события от вероятности при данном числе испытаний n и заданной вероятности P.

Величину называют «доверительным интервалом», а вероятность P – «надежностью» или «доверительной вероятностью».

23 Элементы математической статистики. Генеральная и выборочная совокупности. Статистическое распределение выборки.

При изучении качественного и количественного признака, характеризующего множество некоторых однородных элементов, не всегда имеется возможность исследовать каждый из них. Поэтому в целях получения информации об этом множестве исследуют только некоторую небольшую часть ее элементов, отобранных совершенно случайно. Практика подтверждает, что выводы, сделанные в результате анализа этой части элементов, бывают достаточно объективными и для всего изучаемого множества.

Множество всех элементов, подлежащих изучению, называют генеральной совокупностью. В отличие от нее выборка – конечная совокупность элементов, отбираемых из генеральной совокупности, для статистического вывода о свойствах генеральной совокупности на основании свойств отобранных элементов.

Любое статистическое исследование всегда связано с производством выборки. Выборка должна быть представительной, т.е. такой, чтобы любой элемент генеральной совокупности мог попасть в нее с вероятностью, не зависящей от характеристик подлежащих измерению.

Число элементов генеральной совокупности (выборки) называют ее объемом.

Пример 1. Из партии, содержащей 10000 деталей, отобрали случайным образом для проверки 80 деталей.

Объем генеральной совокупности в данном примере равен 10000, а объем выборки – 80.

Очевидно, что чем больше объем выборки, тем более полное представление можно получить о генеральной совокупности.

Исследование выборки сводится к отысканию ее статистик (функций выборки), к которым относят: вариационный ряд, статистическое распределение выборки, эмпирическую функцию распределения, гистограмму, среднее арифметическое результатов наблюдений и т. п. Статистики, используемые для приближенной оценки параметров генеральной совокупности, называют также статистическими оценками.

Статистическое распределение выборки отражает соответствие между наблюдаемыми значениями и их частотами или относительными частотами.

Пусть из генеральной совокупности извлечена выборка объема n, причем наблюдалось раз, раз, …, , где .

Наблюдаемые значения называют вариантами, последовательность же вариантов, расположенных в возрастающем порядке, - вариационным рядом.

Число , показывающее, сколько раз встречается вариант в выборке, называют частотой варианта.

Отношение частоты варианта к объему выборки n называют относительной частотой: .

С учетом этих определений под статистическим распределением выборки понимают перечень вариант и соответствующих им частот или относительных частот .

Пример 2 Задано статистическое распределение частот (Таблица 5.1):

Таблица 5.1

2

5

7

1

3

6

Объем выборки n=10. Находим относительные частоты:

и составляем статистическое распределение относительных частот (таблица 5.2):

Таблица 5.2

2

5

7

0.1

0.3

0.6

В целях наглядности соответствия между наблюдаемыми вариантами и частотами или относительными частотами распределение выборки изображают графически.

Для этого точки последовательно соединяют отрезками прямой. Получающаяся при этом ломаная линия называется полигоном частот; если же последовательно соединить отрезками прямой точки , то – полигоном относительных частот.